Filtry
wszystkich: 298
wybranych: 293
-
Katalog
Filtry wybranego katalogu
Wyniki wyszukiwania dla: SHELL ELEMENT
-
Experimental Investigations on the Influence of Coil Arrangement on Melting/Solidification Processes
PublikacjaThe latent heat thermal energy storage units are very popular because of their high energy density and almost close to constant temperature during the charging/discharging. In the present study has been proposed new shell-and-coil geometry with a shifted coil position to enhance the performance of phase change thermal magazine. The experimental investigations have been performed both for the melting and solidification process of...
-
The influence of selected strain-based failure criteria on ship structure damage resulting from a collision with an offshore wind turbine monopile
PublikacjaOffshore wind farms are developing well all over the world, providing green energy from renewable sources. The evaluation of possible consequences of a collision involves Finite Element computer simulations. The goal of this paper was to analyse the influence of selected strain-based failure criteria on ship damage resulting from a collision with an offshore wind turbine monopile. The case of a collision between an offshore supply...
-
Buckling analyses of metal cylindrical silos containing bulk solids during filling
PublikacjaThe paper presents 3D results on stability of thin-walled cylindrical metal silos made of isotropic rolled and corrugated plates containing bulk solids. The behavior of bulk solids was described using a hypoplastic constitutive model. Nonlinear finite element (FE) analyses with both geometric and material nonlinearity were performed with a perfect and an imperfect silo shell wherein initial geometric imperfections were taken into...
-
Surface sliding in human abdominal wall numerical models: Comparison of single-surface and multi-surface composites
PublikacjaDetermining mechanical properties of abdominal soft tissues requires a coupled experimental-numerical study, but first an appropriate numerical model needs to be built. Precise modeling of human abdominal wall mechanics is difficult because of its complicated multi-layer composition and large variation between specimens. There are several approaches concerning simplification of numerical models, but it is unclear how far one could...
-
Three-point bending test of sandwich beams supporting the GFRP footbridge design process - validation
PublikacjaSome selected aspects concerning material and construction design issues for pedestrian footbridge made of GFRP composite materials are elaborated in this paper. The analysis is focused on validation tests, which are particularly important because of the advanced technology and materials that are used for this innovative bridge. The considered footbridge is a sandwich-type shell structure comprising of PET foam core and outer skins...
-
Buckling of simplified models of silo with corrugated walls and vertical stiffeners
PublikacjaThe paper deals with buckling of cylindrical silos composed of corrugated sheets and vertical stiffeners (columns). Comprehensive finite element analyses were carried out for a perfect silo by means of a linear buckling approach. Corrugated walls were simulated as an equivalent orthotropic shell and vertical thin-walled columns as beam elements. Calculations for perfect silos with different numbers of columns made it possible to...
-
Textile reinforced concrete members subjected to tension, bending, and in-plane loads: Experimental study and numerical analyses
PublikacjaTextile reinforced concrete has raised increasing research interest during the last years, mainly due to its potential to be used for freeform shell structures involving complex load situations. Yet, most experimental work has focused on test setups with primarily uniaxial loading. In the current work, such setups are complemented with a novel test setup of deep beams, including in-plane bending and shear. Further, nonlinear finite...
-
Propagation of guided elastic waves in shell-type aircraft structural elements
PublikacjaW pracy przedstawiony powłokowy spektralny element skończony do analizy zjawiska propagacji fal sprężystych w elementach konstrukcyjnych typu powłokowego.
-
Axial capacity of steel built-up battened columns
PublikacjaThis paper deals with the numerical investigation aimed to study the axial capacity of pin-ended steel built-up columns. Three methods of calculating forces in chords and batten, taking into account the material and geometric imperfections specified in the Eurocode 3 are considered. The aim of this study was to compare different methods allowing the calculation of the column load capacity and determine a simpler and faster method...
-
Modelling of Abdominal Wall Under Uncertainty of Material Properties
PublikacjaThe paper concerns abdominal wall modelling. The accurate prediction and simulation of abdominal wall mechanics are important in the context of optimization of ventral hernia repair. The shell Finite Element model is considered, as the one which can be used in patient-specific approach due to relatively easy geometry generation. However, there are uncertainties in this issue, e.g. related to mechanical properties since the properties...
-
Two- and three-dimensional elastic networks with rigid junctions: modeling within the theory of micropolar shells and solids
PublikacjaFor two- and three-dimensional elastic structures made of families of flexible elastic fibers undergoing finite deformations, we propose homogenized models within the micropolar elasticity. Here we restrict ourselves to networks with rigid connections between fibers. In other words, we assume that the fibers keep their orthogonality during deformation. Starting from a fiber as the basic structured element modeled by the Cosserat...
-
Stabilizing forces in trapezoidal sheeting used as a part of the bracing system
PublikacjaIn the analysis of bracing systems imperfections of the restrained elements should be considered. According to EC3 this effect can be calculated by means of the equivalent stabilizing force, which replaces (in simplified way) initial bow imperfection of the braced element. However, alternative suggestions of the equivalent stabilizing force calculations can be also found in the literature. In this paper segment of the pitched roof...
-
Stabilizing forces in trapezoidal sheeting used as a part of the bracing system
PublikacjaIn the analysis of bracing systems imperfections of the restrained elements should be considered. According to EC3 this effect can be calculated by means of the equivalent stabilizing force, which replaces (in simplified way) initial bow imperfection of the braced element. However, alternative suggestions of the equivalent stabilizing force calculations can be also found in the literature. In this paper segment of the pitched roof...
-
Structural Health Monitoring of Composite Shell Footbridge for Its Design Validation
PublikacjaThe paper presents the structural health monitoring system of the composite bridge for pedestrians and cyclists. The footbridge was designed and manufactured within the FOBRIDGE project. It is the first bridge in the world, which is classified as a consistent single element structural girder, made of sandwich shells, entirely produced in a single cycle. The developed structural health monitoring system, supported design process,...
-
Numerical analysis of elastic wave propagation in unbounded structures
PublikacjaThe main objective of this paper is to show the effectiveness and usefulness of the concept of an absorbing layer with increasing damping (ALID) in numerical investigations of elastic wave propagation in unbounded engineering structures. This has been achieved by the authors by a careful investigation of three different types of structures characterised by gradually increasing geometrical and mathematical description complexities....
-
Continuum contact model for friction between graphene sheets that accounts for surface anisotropy and curvature
PublikacjaUnderstanding the interaction mechanics between graphene layers and co-axial carbon nanotubes (CNTs) is essential for modeling graphene and CNT-based nanoelectromechanical systems. This work proposes a new continuum contact model to study interlayer interactions between curved graphene sheets. The continuum model is calibrated and validated using molecular dynamics (MD) simulations. These are carried out employing the reactive...
-
Nonlinear material identification of heterogeneous isogeometric Kirchhoff–Love shells
PublikacjaThis work presents a Finite Element Model Updating inverse methodology for reconstructing heterogeneous materialdistributions based on an efficient isogeometric shell formulation. It uses nonlinear hyperelastic material models suitable fordescribing incompressible material behavior as well as initially curved shells. The material distribution is discretized by bilinearelements such that the nodal values...
-
Computational analysis of power-law fluids for convective heat transfer in permeable enclosures using Darcy effects
PublikacjaNatural convection is a complex environmental phenomenon that typically occurs in engineering settings in porous structures. Shear thinning or shear thickening fuids are characteristics of power-law fuids, which are non-Newtonian in nature and fnd wide-ranging uses in various industrial processes. Non-Newtonian fuid fow in porous media is a difcult problem with important consequences for energy systems and heat transfer. In this...
-
MARSTRUCT benchmark study on nonlinear FE simulation of an experiment of an indenter impact with a ship side-shell structure
PublikacjaThis paper presents a benchmark study on collision simulations that was initiated by the MARSTRUCT Virtual Institute. The objective was to compare assumptions, finite element models, modelling techniques and experiences between established researchers within the field. Fifteen research groups world-wide participated in the study. An experiment involving a rigid indenter penetrating a ship-like side structure was used as the case...
-
Junctions In Shell Structures: A Review
PublikacjaMany shell structures used in modern technology consist of regular shell parts joined together along their common boundaries. We review different theoretical, numerical, and experimental approaches to modelling, analyses and design of the compound shell structures with junctions. Several alternative forms of boundary, continuity and jump conditions at the singular midsurface curves modelling the shell junction are reviewed. We...
-
The Impact of Contemporary Technology on Shell Structures: Material and Light Solutions
PublikacjaWith the development of technology and the materials used, shell structures have developed into more complex forms. This article is a comparison between contemporary and historical shell structures. The change is an effect of the evolution in the design process that is the result of parametric design thinking. The study aims to investigate the impact of new technologies on the architectural form of shell structures. Was there any...
-
On the exact equilibrium conditions of irregular shells reinforced by beams along the junctions
PublikacjaThe exact, resultant equilibrium conditions for irregular shells reinforced by beams along the junctions are formulated. The equilibrium conditions are derived by performing direct integration of the global equilibrium conditions of continuum mechanics. New, exact resultant static continuity conditions along the singular curve modelling reinforced junction are presented. The results do not depend on shell thickness, internal through-the-thickness...
-
ON AXIALLY SYMMETRIC SHELL PROBLEMS WITH REINFORCED JUNCTIONS
PublikacjaWithin the framework of the six-parameter nonlinear resultant shell theory we consider the axially symmetric deformations of a cylindrical shell linked to a circular plate. The reinforcement in the junction of the shell and the plate is taken into account. Within the theory the full kinematics is considered. Here we analyzed the compatibility conditions along the junction and their in uence on the deformations and stressed state.
-
On solvability of initial boundary-value problems of micropolar elastic shells with rigid inclusions
PublikacjaThe problem of dynamics of a linear micropolar shell with a finite set of rigid inclusions is considered. The equations of motion consist of the system of partial differential equations (PDEs) describing small deformations of an elastic shell and ordinary differential equations (ODEs) describing the motions of inclusions. Few types of the contact of the shell with inclusions are considered. The weak setup of the problem is formulated...
-
Galerkin formulations with Greville quadrature rules for isogeometric shell analysis: Higher order elements and locking
PublikacjaWe propose new Greville quadrature schemes that asymptotically require only four in-plane points for Reissner-Mindlin (RM) shell elements and nine in-plane points for Kirchhoff-Love (KL) shell elements in B-spline and NURBS-based isogeometric shell analysis, independent of the polynomial degree of the elements. For polynomial degrees 5 and 6, the approach delivers high accuracy, low computational cost, and alleviates membrane and...
-
Shell model of multiple-row moment I-section end-plate joint
PublikacjaThe paper deals with a problem of application of shell elements in the models of multiple-row moment end-plate connections. The extended connection of I-section with a cross-section W760x265x220 made of steel S355 was analyzed. Comparison analysis of FEM, complex volume and shell models has been done. Three cases with different end-plate thickness: 14, 18 and 36 mm were analyzed and compared with the reference results. Comparison...
-
On refined constitutive equations in the six-field theory of elastic shells
PublikacjaWithin the resultant six-field shell theory, the second approximation to the complementary energy density of an isotropic elastic shell undergoing small strains is constructed. In this case, the resultant drilling couples are expressed explicitly by the stress resultants and stress couples as well as by amplitudes of the quadratic and cubic distributions of an intrinsic deviation vector. The refined 2D strain-stress and stress-strain...
-
Computations of critical load value of composite shell with random geometric imperfections
PublikacjaThe work presents the numerical analysis of composite shell with geometric imperfections subjected to compression along its generatrix. The imperfections are described as single indentations and random fields with random parameters of shape and correlation. The fields are generated with the use of the authors made program. Using the authors’ FEM software as well as commercial package Femap with NX Nastran, the critical load values...
-
On exact two-dimensional kinematics for the branching shells
PublikacjaWe construct the two-dimensional (2D) kinematics which is work-conjugate to the exact 2D local equilibrium conditions of the non-linear theory of branching shells. It is shown that the compatible shell displacements consist of the translation vector and rotation tensor fields defined on the regular parts of the shell base surface as well as independently on the singular surface curve modelling the shell branching. Several characteristic...
-
Drilling couples and refined constitutive equations in the resultant geometrically non-linear theory of elastic shells
PublikacjaIt is well known that distribution of displacements through the shell thickness is non-linear, in general. We introduce a modified polar decomposition of shell deformation gradient and a vector of deviation from the linear displacement distribution. When strains are assumed to be small, this allows one to propose an explicit definition of the drilling couples which is proportional to tangential components of the deviation vector....
-
On the generalized model of shell structures with functional cross-sections
PublikacjaIn the present study, a single general formulation has been presented for the analysis of various shell-shaped structures. The proposed model is comprehensive and a variety of theories can be used based on it. The cross-section of the shell structure can be arbitrarily analyzed with the presented equations. In other words, various types of shell structures, including cylindrical, conical, spherical, elliptical, hyperbolic, parabolic,...
-
Deformations of the steel schell of a vertical cylindrical tank caused by underpressure
PublikacjaUnderpressure in a tank with a fixed roof may arise in the final stage of its construction as well as during its usage. This article presents stages of deformations of the tank shell and their development from the occurrence of the first deformation to either removal of the causes of underpressure or cracking of the steel shell.
-
Determination of Failure Causes of a Steam Turbine Casing
PublikacjaThe paper presents results of research and failure analysis undertaken to determine failure causes of a steam turbine casing. After 130,000 hours of service the crack in a outer shell of the turbine casing was found. The inner shell of the casing was made of cast steel grade G21CrMoV5-7, and the outer shell of grade G20CrMo4-5. Following research were performed in order to determine causes of the casing failure: chemical analysis;...
-
HEAT TRANSFER CHARACTERISTICS OF ENHANCED SHELL AND COIL HEAT EXCHANGER
PublikacjaIn the paper authors presented their own constructions of shell and tube heat exchangers with intensified heat transfer. The shell and coils heat exchangers are in common use in heat ventilations and air conditioning systems. Those types of recuperators are quite simple constructions, the low value of pressure drops and good conditions of heat transfer. The present study shows an experimental investigation of the heat transfer...
-
A Nonlinear Model of a Mesh Shell
PublikacjaFor a certain class of elastic lattice shells experiencing finite deformations, a continual model using the equations of the so-called six-parameter shell theory has been proposed. Within this model, the kinematics of the shell is described using six kinematically independent scalar degrees of freedom — the field of displacements and turns, as in the case of the Cosserat continuum, which gives reason to call the model under consideration...
-
Exact resultant equilibrium conditions in the non-linear theory of branching and self-intersecting shells
PublikacjaWe formulate the exact, resultant equilibrium conditions for the non-linear theory of branching and self-intersecting shells. The conditions are derived by performing direct through-the-thickness integration in the global equilibrium conditions of continuum mechanics. At each regular internal and boundary point of the base surface our exact, local equilibrium equations and dynamic boundary conditions are equivalent, as expected,...
-
Spectroscopic and magnetic studies of highly dispersible superparamagnetic silica coated magnetite nanoparticles
PublikacjaSuperparamagnetic behavior in aqueously well dispersible magnetite core-shell Fe3O4@SiO2 nanoparticles is presented. The magnetic properties of core-shell nanoparticles were measured with use of the DC, AC magnetometry and EPR spectroscopy. Particles were characterized by HR-TEM and Raman spectroscopy, showing a crystalline magnetic core of 11.5 ± 0.12 nm and an amorphous silica shell of 22 ± 1.5 nm in thickness. The DC, AC magnetic...
-
Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field
PublikacjaThis paper considers a single-walled composite nano-shell (SWCNS) exposed in a torsional critical stability situation. As the magnetic field affects remarkably nanostructures in the small size, a three-dimensional magnetic field is assessed which contains magnetic effects along the circumferential, radial and axial coordinates system. Based on the results of the nonlocal model of strain gradient small-scale approach and the first-order...
-
Robust four-node elements based on Hu–Washizu principle for nonlinear analysis of Cosserat shells
PublikacjaMixed 4-node shell elements with the drilling rotation and Cosserat-type strain measures based onthe three-field Hu–Washizu principle are proposed. In the formulation, apart from displacement and rotationfields, both strain and stress resultant fields are treated as independent. The elements are derived in the frame-work of a general nonlinear 6-parameter shell theory dedicated to the analysis of multifold irregular shells.The...
-
Analysis of magnetic field distribution inside ferromagnetic thin shells during degaussing process
PublikacjaAnalysis of the demagnetization of a large ferromagnetic object like a ship, was conducted. The approximate mathematical model in the form of a long cylindrical shell of constant magnetic permeability was applied. The discrete degaussing winding was assumed and the current density and magnetic flux density distribution in the ferromagnetic shell wall were determined. Based on the frequential and temporal analysis the recommended...
-
Theory of valence-band and core-level photoemission from plutonium dioxide
PublikacjaThe correlated-band theory implemented as a combination of the local-density approximation with the dynamical mean-field theory is applied to PuO2. An insulating electronic structure, consistent with the experimental valence-band photoemission spectra, is obtained. The calculations yield a nonmagnetic ground state that is characterized by a noninteger filling of the plutonium 5f shell. The noninteger filling as well as the satellites...
-
Experimental investigations on heat transfer enhancement in shell coil heat exchanger with VARIABLE Baffles GEOMETRY
PublikacjaThe paper presents the possibility of using passive intensification of heat transfer in the form of baffles to increase the energy efficiency of the shell and coil heat exchanger. The experiment was carried out by using a modular coil heat exchanger in the form of an electric heater. Water was used as a working fluid with constant thermal-flow parameters at the inlet of the module. It should be noted that experiments were made...
-
On the correspondence between two- and three-dimensional Eshelby tensors
PublikacjaWe consider both three-dimensional (3D) and two-dimensional (2D) Eshelby tensors known also as energy–momentum tensors or chemical potential tensors, which are introduced within the nonlinear elasticity and the resultant nonlinear shell theory, respectively. We demonstrate that 2D Eshelby tensor is introduced earlier directly using 2D constitutive equations of nonlinear shells and can be derived also using the throughthe-thickness...
-
Thermodynamic and geometrical characteristics of mixed convection heat transfer in the shell and coil tube heat exchanger with baffles
PublikacjaThe article presents passive heat transfer enhancement method in the form of baffles to increase the energy efficiency of the shell coil heat exchanger. Conducted literature review shows that, despite numer- ous studies, there is little work on the intensification of heat transfer at the shell side. Most of the work focuses on the impact of geometrical parameters of the coil itself. This article successfully proves that it is possible...
-
Correlation between natural frequencies and buckling load in a stiffened shell
PublikacjaThe paper deals with correlation between natural frequencies and buckling load of a stiffened shell composed of corrugated sheets and vertical stiffeners (columns). The simplified shell segment represents the buckling behaviour of a whole silo with sparsely distributed columns. The paper covers variants of linear buckling anal-yses, dynamic eigenvalue analyses and geometrically non-linear analyses of a segment modelled with shell...
-
Singular curves in the resultant thermomechanics of shells
PublikacjaSome geometric and kinematic relations associated with the curve moving on the shell base surface are discussed. The extended surface transport relation and the extended surface divergence theorems are proposed for the piecewise smooth tensor fields acting on the regular and piecewise regular surfaces. The recently formulated resultant, two-dimensionally exact, thermodynamic shell relations - the balances of mass, linear and angular...
-
Geometrically nonlinear FEM analysis of 6-parameter resultant shell theory based on 2-D Cosserat constitutive model
PublikacjaWe develop the elastic constitutive law for the resultant statically and kinematically exact, nonlinear, 6-parameter shell theory. The Cosserat plane stress equations are integrated through-the- thickness under assumption of the Reissner-Mindlin kinematics. The resulting constitutive equations for stress resultant and couple resultants are expressed in terms of two micropolar constants: the micropolar modulus Gc and the micropolar...
-
On jump conditions at non-material singular curves in the resultant shell thermomechanics
PublikacjaThe global, refined, resultant, two-dimensional (2D) balance laws of mass, linear and angular momenta, and energy as well as the entropy inequality were formulated by Pietraszkiewicz (2011) as exact implications of corresponding laws of 3D rational thermomechanics. In case of a shell with the regular base surface and all resultant surface fields differentiable everywhere on it and at any time instant, the local laws of the resultant...
-
Study on effective front region thickness of PCM in thermal energy storage using a novel semi-theoretical model
PublikacjaThermal energy storage in mobile applications, particularly battery of electric vehicles, is currently gaining a lot of importance. In this paper, a semi-theoretical time-dependent mathematical model of the phase change in a double shell thermal energy storage module has been developed where the inner tube is a heat exchange surface. An effective front region thickness for the melting and solidification process has been studied....
-
Effect of ectoine on hydration spheres of peptides–spectroscopic studies
PublikacjaIn this paper, we use FTIR spectroscopy to characterize the hydration water of ectoine, its interactions with two peptides–diglycine and NAGMA, and the properties of water molecules in the hydration spheres of both peptides changed by the presence of the osmolyte. We found that the interaction of ectoine with the peptide hydration shells had no effect on its own hydration sphere. However, the enhanced hydration layer of the osmolyte...