Filtry
wszystkich: 1880
-
Katalog
- Publikacje 1454 wyników po odfiltrowaniu
- Czasopisma 66 wyników po odfiltrowaniu
- Konferencje 64 wyników po odfiltrowaniu
- Osoby 68 wyników po odfiltrowaniu
- Projekty 3 wyników po odfiltrowaniu
- Kursy Online 30 wyników po odfiltrowaniu
- Wydarzenia 1 wyników po odfiltrowaniu
- Dane Badawcze 194 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: recurrent neural networks
-
Creating a radiological database for automatic liver segmentation using artificial intelligence.
PublikacjaImaging in medicine is an irreplaceable stage in the diagnosis and treatment of cancer. The subsequent therapeutic effect depends on the quality of the imaging tests performed. In recent years we have been observing the evolution of 2D to 3D imaging for many medical fields, including oncological surgery. The aim of the study is to present a method of selection of radiological imaging tests for learning neural networks.
-
On a Method of Efficiency Increasing in Kaplan Turbine
PublikacjaThis paper presents a method of increasing efficiency in Kaplan-type turbine. The method is based on blade profile optimisation together with modelling the interaction between rotor and stator blades. Loss coefficient was chosen as the optimisation criterion, which is related directly to efficiency. Global optimum was found by means of Genetic Algorithms, and Artificial Neural Networks were utilised for approximations to reduce...
-
Deep Learning Optimization for Edge Devices: Analysis of Training Quantization Parameters
PublikacjaThis paper focuses on convolution neural network quantization problem. The quantization has a distinct stage of data conversion from floating-point into integer-point numbers. In general, the process of quantization is associated with the reduction of the matrix dimension via limited precision of the numbers. However, the training and inference stages of deep learning neural network are limited by the space of the memory and a...
-
Classifying Emotions in Film Music - A Deep Learning Approach
PublikacjaThe paper presents an application for automatically classifying emotions in film music. A model of emotions is proposed, which is also associated with colors. The model created has nine emotional states, to which colors are assigned according to the color theory in film. Subjective tests are carried out to check the correctness of the assumptions behind the adopted emotion model. For that purpose, a statistical analysis of the...
-
Speech Analytics Based on Machine Learning
PublikacjaIn this chapter, the process of speech data preparation for machine learning is discussed in detail. Examples of speech analytics methods applied to phonemes and allophones are shown. Further, an approach to automatic phoneme recognition involving optimized parametrization and a classifier belonging to machine learning algorithms is discussed. Feature vectors are built on the basis of descriptors coming from the music information...
-
Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy
PublikacjaThe diabetic retinopathy is a disease caused by long-standing diabetes. Lack of effective treatment can lead to vision impairment and even irreversible blindness. The disease can be diagnosed by examining digital color fundus photographs of retina. In this paper we propose deep learning approach to automated diabetic retinopathy screening. Deep convolutional neural networks (CNN) - the most popular kind of deep learning algorithms...
-
Document Agents with the Intelligent Negotiations Capability
PublikacjaThe paper focus is on augmenting proactive document-agents with built -in intelligence to enable them to recognize execution context provided by devices visited durning the business process, and to reach collaboration agreement despite of their conflicting requirements. We propose a solution based on neural networks to improve simple multi-issue negotiation between the document and the device, practically with no excessive cost...
-
Automatic music set organizatio based on mood of music / Automatyczna organizacja bazy muzycznej na podstawie nastroju muzyki
PublikacjaThis work is focused on an approach based on the emotional content of music and its automatic recognition. A vector of features describing emotional content of music was proposed. Additionally, a graphical model dedicated to the subjective evaluation of mood of music was created. A series of listening tests was carried out, and results were compared with automatic mood recognition employing SOM (Self Organizing Maps) and ANN (Artificial...
-
Neuronowa symulacja temperatury i ciśnienia pary w upuście parowego bloku energetycznego = Neural simulation of pressure and temperature fluctuations at steam extraction of power units with steam turbine
PublikacjaW artykule przedstawiono metodę symulacji neuronowej dla zastosowań w diagnostyce on-line bloków energetycznych. Model neuronowy opiera się na statycznych jednokierunkowych sieciach neuronowych (SSN) oraz na danych z parowego bloku energetycznego o mocy 200 MW. SSN obliczają wartości referencyjne parametrów cieplno-przepływowych dla aktualnego obciążenia obiektu. Określono wpływ architektury sieci i danych uczących na jakość symulacji...
-
Zarządzanie (współzarządzanie) sieciowe i zarządzanie sieciami w wymiarze sprawiedliwości – wyzwania (15 stron) Governance network and networks governance in the justice system – challenges
PublikacjaCelem artykułu jest próba odpowiedzi na pytania czy w wymiarze sprawiedliwości jest miejsce i podstawa do wdrożenia zarządzania sieciowego (współzarządzania) oraz czy w działalności pomocniczej wymiaru sprawiedliwości istnieje potencjał do jego wdrożenia. W wymiarze sprawiedliwości istnieje duży potencjał do wykorzystania mechanizmów sieciowej współpracy. W ramach przestrzeni wymiaru sprawiedliwości współpraca międzyorganizacyjna...
-
Towards Knowledge Sharing Oriented Adaptive Control
PublikacjaIn this paper, we propose a knowledge sharing oriented approach to enable a robot to reuse other robots' knowledge by adapting itself to the inverse dynamics model of the knowledge-sharing robot. The purpose of this work is to remove the heavy fine-tuning procedure required before using a new robot for a task via reusing other robots' knowledge. We use the Neural Knowledge DNA (NK-DNA) to help robots gain empirical knowledge and...
-
Abdominal epilepsy in patient of schizophrenia - a diagnostic dilemma
PublikacjaAbdominal epilepsy is a rare and uncomman cause of recurrent abdominal pain. It is commonly occuring in children, but rarely in adolescent and elderly. Paroxysmal episodes of abdominal pain with neurological symptoms like dizziness, lethargy, and abnormal electroencephalogram and remarkable response to anticonvulsant confirms the diagnosis. Here we present a case of schizophrenia, who has repoted with recurrent abdominal pain...
-
Sławomir Gajewski dr inż.
Osoby -
Control of the cultivation of cartilages for using in the biobearings.
PublikacjaBiotribologiczne charakterystyki biołożysk są zależne od procesu hodowli żywej tkanki chrząstki w bioreaktorze. Z kolei proces ten, jest wielowymiarowym procesem dynamicznym sterowanym za pomocą odpowiedniego układu automatycznej regulacji. Praca przedstawia prawo i algorytm sterowania takiego procesu. W tym celu zastosowano sztuczne sieci neuronowe (Artificial Neural Networks - ANN) i zaprezentowano wyniki obliczeń.
-
Paweł Czarnul dr hab. inż.
OsobyPaweł Czarnul uzyskał stopień doktora habilitowanego w dziedzinie nauk technicznych w dyscyplinie informatyka w roku 2015 zaś stopień doktora nauk technicznych w zakresie informatyki(z wyróżnieniem) nadany przez Radę Wydziału Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej w roku 2003. Dziedziny jego zainteresowań obejmują: przetwarzanie równoległei rozproszone w tym programowanie równoległe na klastrach obliczeniowych,...
-
Adaptive CAD-Model Construction Schemes
PublikacjaTwo advanced surrogate model construction techniques are discussed in this paper. The models employ radial basis function (RBF)interpolation scheme or artificial neural networks (ANN) with a new training algorithm. Adaptive sampling technique is applied withrespect to all variables. Histograms showing the quality of the models are presented. While the quality of RBF models is satisfactory, theperformance of the ANN models obtained...
-
Expert systems in assessing the construction process safety taking account of the risk of disturbances
PublikacjaThe objective of the paper is to present the issue of safety manage-ment during the construction process. Threats in the form of disturb-ances may occur in the preparatory phase, during the execution of the construction project and also during its operational use. The arti-cle presents the concept of applying the methodology based, among others, on Learning Bayesian Networks, Artificial Neural Networks and Support Vector Machine,...
-
Machine Learning in Multi-Agent Systems using Associative Arrays
PublikacjaIn this paper, a new machine learning algorithm for multi-agent systems is introduced. The algorithm is based on associative arrays, thus it becomes less complex and more efficient substitute of artificial neural networks and Bayesian networks, which is confirmed by performance measurements. Implementation of machine learning algorithm in multi-agent system for aided design of selected control systems allowed to improve the performance...
-
Pan European Networks: Science & Technology
Czasopisma -
Małgorzata Gajewska dr inż.
Osoby -
A Method for Optimising the Blade Profile in Kaplan Turbine
PublikacjaThis paper introduces a method of blade profile optimisation for Kaplan-type turbines, based on modelling the interaction between rotor and stator blades. Rotor and stator blade geometry is described mathematically by means of a midline curve and thickness distribution. Genetic algorithms are then used to find a global optimum that minimises the loss coefficient. This allows for variety of possible blade shapes and configurations....
-
AUTOMATED NEGOTIATIONS OVER COLLABORATION PROTOCOL AGREEMENTS
PublikacjaThe dissertation focuses on the augmentation of proactive document - agents with built-in intelligence to recognize execution context provided by devices visited during a business process, and to reach collaboration agreement despite conflicting requirements. The proposed solution, based on intelligent bargaining using neural networks to improve simple multi-issue negotiation between the document and thedevice, requires practically...
-
Knowledge representation of motor activity of patients with Parkinson’s disease
PublikacjaAn approach to the knowledge representation extraction from biomedical signals analysis concerning motor activity of Parkinson disease patients is proposed in this paper. This is done utilizing accelerometers attached to their body as well as exploiting video image of their hand movements. Experiments are carried out employing artificial neural networks and support vector machine to the recognition of characteristic motor activity...
-
Selection of Features for Multimodal Vocalic Segments Classification
PublikacjaEnglish speech recognition experiments are presented employing both: audio signal and Facial Motion Capture (FMC) recordings. The principal aim of the study was to evaluate the influence of feature vector dimension reduction for the accuracy of vocalic segments classification employing neural networks. Several parameter reduction strategies were adopted, namely: Extremely Randomized Trees, Principal Component Analysis and Recursive...
-
BIG DATA SIGNIFICANCE IN REMOTE MEDICAL DIAGNOSTICS BASED ON DEEP LEARNING TECHNIQUES
PublikacjaIn this paper we discuss the evaluation of neural networks in accordance with medical image classification and analysis. We also summarize the existing databases with images which could be used for training deep models that can be later utilized in remote home-based health care systems. In particular, we propose methods for remote video-based estimation of patient vital signs and other health-related parameters. Additionally, potential...
-
General concept of reduction process for big data obtained by interferometric methods
PublikacjaInterferometric sonar systems apply the phase content of the sonar signal to measure the angle of a wave front returned from the seafloor or from a target. It collect a big data – datasets that are so large or complex that traditional data processing application software is inadequate to deal with them. The recording a large number of data is associated with the difficulty of their efficient use. So data have to be reduced. The main...
-
Problems of modelling toxic compounds emitted by a marine internal combustion engine in unsteady states
PublikacjaContemporary engine tests are performed based on the theory of experiment. The available versions of programmes used for analysing experimental data make frequent use of the multiple regression model, which enables examining effects and interactions between input model parameters and a single output variable. The use of multi-equation models provides more freedom in analysing the measured results, as those models enable simultaneous...
-
Simulating Power Generation from Photovoltaics in the Polish Power System Based on Ground Meteorological Measurements—First Tests Based on Transmission System Operator Data
PublikacjaThe Polish power system is undergoing a slow process of transformation from coal to one that is renewables dominated. Although coal will remain a fundamental fuel in the coming years, the recent upsurge in installed capacity of photovoltaic (PV) systems should draw significant attention. Owning to the fact that the Polish Transmission System Operator recently published the PV hourly generation time series in this article, we aim...
-
Efkleidis Katsaros
OsobyEfklidis Katsaros received the B.Sc. degree in mathematics from the Aristotle University of Thessaloniki, Greece, in 2016, and the M.Sc. degree (cum laude) in data science: statistical science from Leiden University, The Netherlands, in 2019. He is currently pursuing the Ph.D. degree in deep video multi-task learning with the Department of Biomedical Engineering, Gdańsk University of Technology, Poland. Since 2020, he has been...
-
THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN
PublikacjaIn the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...
-
Collaborative Data Acquisition and Learning Support
PublikacjaWith the constant development of neural networks, traditional algorithms relying on data structures lose their significance as more and more solutions are using AI rather than traditional algorithms. This in turn requires a lot of correctly annotated and informative data samples. In this paper, we propose a crowdsourcing based approach for data acquisition and tagging with support for Active Learning where the system acts as an...
-
Signal Processing in the Investigation of Two-phase Liquid-gas Flow by Gamma-ray Absorption
Publikacjan this paper, the use of the gamma-absorption method applied in the investigation of the two-phase liquid-gas flow in the pipeline is described. An example of its application to the air transported by water in a horizontal pipeline is evaluated. In the measurements, Am-241 radioactive sources and probes with Nal (Tl) scintillation crystals have been used. The signals from the radiometric set were used to determine the velocity...
-
Advances in Neural Information Processing Systems (Advances in Neural Information Processing Systems [NIPS])
Konferencje -
Assessment of Emotional Expressions after Full-Face Transplantation
Publikacja -
Supramolecular structures formed by 2-aminopyridine derivatives. Part I. Hydrogenbonding networks via N-H...N interactions and the conformational polymorphism of N,N´-bis(2-piridyl)aryldiamines
PublikacjaOtrzymano serię N,N´-bis(2-pirydylo)arylodiamin w postaci monokryształów. Zgodnie z oczekiwaniami, powstawały dwie odmiany polimorficzne. Forma EE z układem wiązań R22(8) figuruje jako jednowymiarowe taśmy. Stwierdzono, że ugrupowanie 2-aminopirydylowe stanowi synton supramolekularny za pomocą którego można projektować struktury w ciele stałym. Właściwości tego syntonu były badane z wykorzystaniem metod dyfrakcyjnych oraz spektroskopii...
-
Urinary Tract Infections Caused by K. pneumoniae in Kidney Transplant Recipients – Epidemiology, Virulence and Antibiotic Resistance
PublikacjaUrinary tract infections are the most common complication in kidney transplant recipients, possibly resulting in the deterioration of a long-term kidney allograft function and an increased risk of recipient’s death. K. pneumoniae has emerged as one of the most prevalent etiologic agents in the context of recurrent urinary tract infections, especially with multidrug resistant strains. This paper discusses the epidemiology and risk...
-
Magdalena Młynarczuk dr inż.
Osoby -
Musical Instrument Identification Using Deep Learning Approach
PublikacjaThe work aims to propose a novel approach for automatically identifying all instruments present in an audio excerpt using sets of individual convolutional neural networks (CNNs) per tested instrument. The paper starts with a review of tasks related to musical instrument identification. It focuses on tasks performed, input type, algorithms employed, and metrics used. The paper starts with the background presentation, i.e., metadata...
-
Study of Statistical Text Representation Methods for Performance Improvement of a Hierarchical Attention Network
PublikacjaTo effectively process textual data, many approaches have been proposed to create text representations. The transformation of a text into a form of numbers that can be computed using computers is crucial for further applications in downstream tasks such as document classification, document summarization, and so forth. In our work, we study the quality of text representations using statistical methods and compare them to approaches...
-
Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality
PublikacjaHigh-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...
-
Application of gas chromatographic data and 2D molecular descriptors for accurate global mobility potential prediction
PublikacjaMobility is a key feature affecting the environmental fate, which is of particular importance in the case of persistent organic pollutants (POPs) and emerging pollutants (EPs). In this study, the global mobility classification artificial neural networks-based models employing GC retention times (RT) and 2D molecular descriptors were constructed and validated. The high usability of RT was confirmed based on the feature selection...
-
International Conference on Neural Information Processing
Konferencje -
Optimal edge-coloring with edge rate constraints
PublikacjaWe consider the problem of covering the edges of a graph by a sequence of matchings subject to the constraint that each edge e appears in at least a given fraction r(e) of the matchings. Although it can be determined in polynomial time whether such a sequence of matchings exists or not [Grötschel et al., Combinatorica (1981), 169–197], we show that several questions about the length of the sequence are computationally intractable....
-
On the complexity of distributed graph coloring with local minimality constraints
PublikacjaArtykuł traktuje o zachłannym kolorowaniu grafów w modelu rozproszonym. Omówiono algorytmy rozproszone, dające w wyniku pokolorowanie spełniające warunki dla pokolorowań sekwencyjnych typu S oraz Largest-First (LF). Udowodniono również, że każda rozproszona implementacja algorytmu S wymaga co najmniej Omega(log n / log log n) rund, a algorytmu LF co najmniej Omega (n^{1/2}) rund, gdzie n oznacza liczbę wierzchołków grafu.
-
SNDlib 1.0—Survivable Network Design Library
Publikacja -
Complexity of a classical flow restoration problem
Publikacja -
On the complexity of resilient network design
Publikacja -
Toward Fast Calculation of Communication Paths for Resilient Routing
PublikacjaUtilization of alternate communication paths is a common technique to provide protection of transmission against failures of network nodes/links. However, a noticeable delay is encountered when calculating the relevant sets of disjoint paths using the available algorithms (e.g., using Bhandari’s approach). This, in turn, may have a serious impact on the ability of a network to serve dynamic demands...
-
Andrzej Marczak dr inż.
Osoby -
Artificial intelligence support for disease detection in wireless capsule endoscopy images of human large bowel
PublikacjaIn the work the chosen algorithms of disease recognition in endoscopy images were described and compared for theirs efficiency. The algorithms were estimated with regard to utility for application in computer system's support for digestive system's diagnostics. Estimations were achieved in an advanced testing environment, which was built with use of the large collection of endoscopy movies received from Medical University in Gdańsk....