Filtry
wszystkich: 1065
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: cross-sensitivity, multiple linear regression, artificial neural networks
-
Bees Detection on Images: Study of Different Color Models for Neural Networks
PublikacjaThis paper presents an approach to bee detection in video streams using a neural network classifier. We describe the motivation for our research and the methodology of data acquisition. The main contribution to this work is a comparison of different color models used as an input format for a feedforward convolutional architecture applied to bee detection. The detection process has is based on a neural binary classifier that classifies...
-
Application of the neural networks for developing new parametrization of the Tersoff potential for carbon
PublikacjaPenta-graphene (PG) is a 2D carbon allotrope composed of a layer of pentagons having sp2- and sp3-bonded carbon atoms. A study carried out in 2018 has shown that the parameterization of the Tersoff potential proposed in 2005 by Ehrhart and Able (T05 potential) performs better than other potentials available for carbon, being able to reproduce structural and mechanical properties of the PG. In this work, we tried to improve the...
-
Modeling and optimizing the removal of cadmium by Sinapis alba L. from contaminated soil via Response Surface Methodology and Artificial Neural Networks during assisted phytoremediation with sewage sludge
Publikacja -
NON-LINEAR MASTIC CHARACTERISTICS BASED ON THE MODIFIED MSCR (MULTIPLE STRESS CREEP RECOVERY) TEST
PublikacjaMastic containing asphalt in its composition is an example of a viscoelastic material. It is an effective binder in asphalt. It consists of a filler (<0.063 mm) and asphalt mixed in the right proportions. Just like in asphalt, its response depends on the temperature level, the load and stress time. Changing the stress stiffness of the mastic affects the non-linear course of the stress-strain relationship. Modelling of the non-linear...
-
Taking decisions in the diagnostic intelligent systems on the basis information from an artificial neural network
Publikacja -
Artificial Neural Network (ANN)-Based Voltage Stability Prediction of Test Microgrid Grid
Publikacja -
Predicting Ice Phenomena in a River Using the Artificial Neural Network and Extreme Gradient Boosting
PublikacjaForecasting ice phenomena in river systems is of great importance because these phenomena are a fundamental part of the hydrological regime. Due to the stochasticity of ice phenomena, their prediction is a difficult process, especially when data sets are sparse or incomplete. In this study, two machine learning models—Multilayer Perceptron Neural Network (MLPNN) and Extreme Gradient Boosting (XGBoost)—were developed to predict...
-
Efficiency of service recovery in scale-free optical networks under multiple node failures
PublikacjaIn this paper we examine the properties of scale-free networks in case of simultaneous failures of two networknodes. Survivability assumptions are as follows: end-to-end path protection with two node-disjoint backup pathsfor each working path. We investigate three models of scale-free networks generation: IG, PFP and BA.Simulations were to measure the lengths of active and backup paths and the values of service recovery time.We...
-
Visual Features for Improving Endoscopic Bleeding Detection Using Convolutional Neural Networks
PublikacjaThe presented paper investigates the problem of endoscopic bleeding detection in endoscopic videos in the form of a binary image classification task. A set of definitions of high-level visual features of endoscopic bleeding is introduced, which incorporates domain knowledge from the field. The high-level features are coupled with respective feature descriptors, enabling automatic capture of the features using image processing methods....
-
Towards bees detection on images: study of different color models for neural networks
PublikacjaThis paper presents an approach to bee detection in videostreams using a neural network classifier. We describe the motivationfor our research and the methodology of data acquisition. The maincontribution to this work is a comparison of different color models usedas an input format for a feedforward convolutional architecture appliedto bee detection. The detection process has is based on a neural...
-
Adsorption chiller in a combined heating and cooling system: simulation and optimization by neural networks
Publikacja -
Automated speech-based screening of depression using deep convolutional neural networks
Publikacja -
Aerodynamic excitations generated in turbine shroud clearance determined bymeans of neural networks
PublikacjaSiły aerodynamiczne generowane w uszczelnieniach turbinowych z reguły opisywane są modelem liniowym. Przy dużych drganiach wirnika sposób ten daje niezbyt dokładne wyniki. Zaproponowano wykorzystanie sieci neuronowych do określania sił ciśnieniowych powstających w uszczelnieniu. Wyniki porównano z badaniami eksperymentalnymi.
-
Router Selfishness in Community Wireless Mesh Networks: Cross-Layer Benefits and Harms
PublikacjaWęzły sieci mesh nie są poddane administracyjnej kontroli, zarazem nie odczuwają ograniczeń energetycznych. Są przez to skłonne do zachowań egoistycznych w warstwach 2 i 3 OSI, w szczególności w odniesieniu do protokołów MAC i routingowych. W pracy przebadano symulacyjnie wybrane aspekty środowiska mesh uzasadniające podjęcie ataków egoistycznych i zidentyfikowano trzy: gęstość rozmieszczenia i położenie routerów oraz warstwa OSI...
-
Perception of Pathologists in Poland of Artificial Intelligence and Machine Learning in Medical Diagnosis—A Cross-Sectional Study
Publikacja -
SZACOWANIE ZAWARTOŚCI BENZO(a)PIRENU W PYLE ZAWIESZONYM PM10 W AGLOMERACJI TRÓJMIEJSKIEJ ZA POMOCĄ WIELOWYMIAROWEJ REGRESJI LINIOWEJ=ESTIMATION OF BENZO(A)PYRENE CONTENT IN SUSPENDED DUST PM10 IN TRI-CITY AGGLOMERATION USING MULTIDIMENSIONAL LINEAR REGRESSION
PublikacjaW pracy przedstawiono próbę oszacowania przy pomocy wielowymiarowej regresji liniowej modelu empirycznego opisującego czynniki wpływające na zawartość B(a)P w pyle zawieszonym PM10 w Aglomeracji Trójmiejskiej w latach 2008-2011. Na przestrzeni tych lat średnioroczne stężenie B(a)P w PM10 wzrosło ponad dwukrotnie i ponad trzykrotnie przewyższa poziom docelowy. Z przeprowadzonych analiz wynika, że główną przyczyną wzrostu stężenia...
-
Detecting Objects of Various Categories in Optical Remote Sensing Imagery Using Neural Networks
PublikacjaThe effective detection of objects in remote sensing images is of great research importance, so recent years have seen a significant progress in deep learning techniques in this field. However, despite much valuable research being conducted, many challenges still remain. A lot of research projects focus on detecting objects of a single category (class), while correctly detecting objects of different categories is much harder. The...
-
The Effectiveness of Using a Pretrained Deep Learning Neural Networks for Object Classification in Underwater Video
Publikacja -
Modelling changes in the energy efficiency of buildings using neural networks on the example of Zielona Góra
Publikacja -
Prediction of Early Childhood Caries Based on Single Nucleotide Polymorphisms Using Neural Networks
Publikacja -
Accurate Modeling of Antenna Structures by Means of Domain Confinement and Pyramidal Deep Neural Networks
PublikacjaThe importance of surrogate modeling techniques has been gradually increasing in the design of antenna structures over the recent years. Perhaps the most important reason is a high cost of full-wave electromagnetic (EM) analysis of antenna systems. Although imperative in ensuring evaluation reliability, it entails considerable computational expenses. These are especially pronounced when carrying out EM-driven design tasks such...
-
Designing of an effective structure of system for the maintenance of a technical object with the using information from an artificial neural network
Publikacja -
Redefining brain tumor segmentation: a cutting-edge convolutional neural networks-transfer learning approach
Publikacja -
Piotr Szczuko dr hab. inż.
OsobyDr hab. inż. Piotr Szczuko w 2002 roku ukończył studia na Wydziale Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej zdobywając tytuł magistra inżyniera. Tematem pracy dyplomowej było badanie zjawisk jednoczesnej percepcji obrazu cyfrowego i dźwięku dookólnego. W roku 2008 obronił rozprawę doktorską zatytułowaną "Zastosowanie reguł rozmytych w komputerowej animacji postaci", za którą otrzymał nagrodę Prezesa Rady...
-
Paweł Możejko dr hab.
Osoby -
The development of an artificial neural network correlation for prediction of rotating magnetic field effects on the process of production of disperse systems Fe3O4–Liquid
Publikacja -
Artificial neural network model of hardness, porosity and cavitation erosion wear of APS deposited Al2O3 -13 wt% TiO2 coatings
Publikacja -
Age Prediction from Low Resolution, Dual-Energy X-ray Images Using Convolutional Neural Networks
PublikacjaAge prediction from X-rays is an interesting research topic important for clinical applications such as biological maturity assessment. It is also useful in many other practical applications, including sports or forensic investigations for age verification purposes. Research on these issues is usually carried out using high-resolution X-ray scans of parts of the body, such as images of the hands or images of the chest. In this...
-
Automatic Brain Tumor Segmentation Using Convolutional Neural Networks: U-Net Framework with PSO-Tuned Hyperparameters
Publikacja -
Real-time mask-wearing detection in video streams using deep convolutional neural networks for face recognition
Publikacja -
Long Short-Term Memory (LSTM) neural networks in predicting fair price level in the road construction industry
Publikacja -
Application of neural networks for identification of forcedness having effect on magnitude of turbine rotor vibration using rotor trajectory.
PublikacjaW pracy dokonano analizy zastosowania sieci neuronowych do wyznaczenia wartości wymuszeń wpływających na wielkość drgań wirnika używając trajektorii jako parametr określający drgania. Badania przeprowadzono na powietrznej, jednostopniowej turbinie modelowej. Przemieszczenia poziome i pionowe wirnika turbiny mierzono przy pomocy systemu pomiarowego i rejestrowano na oscyloskopie cyfrowym. Przeprowadzono pomiary trajektorii ruchu...
-
Andrzej Stateczny prof. dr hab. inż.
OsobyProf. dr hab. inż. Andrzej Stateczny jest profesorem Politechniki Gdańskiej i prezesem firmy Marine Technology Ltd. Jego zainteresowania naukowe koncentrują się głównie wokół nawigacji, hydrografii i geoinformatyki. Obecnie prowadzone badania obejmują nawigację radarową, nawigację porównawczą, hydrografię, metody sztucznej inteligencji w zakresie przetwarzania obrazów i fuzji danych wielosensorycznych. Był kierownikiem lub głównym...
-
Application of PSO-artificial neural network and response surface methodology for removal of methylene blue using silver nanoparticles from water samples
Publikacja -
Oral Health Status and Treatment Needs Based on Artificial Intelligence (AI) Dental Panoramic Radiograph (DPR) Analysis: A Cross-Sectional Study
Publikacja -
Particle swarm optimization–artificial neural network modeling and optimization of leachable zinc from flour samples by miniaturized homogenous liquid–liquid microextraction
Publikacja -
Deep Learning Basics 2023/24
Kursy OnlineA course about the basics of deep learning intended for students of Computer Science. It includes an introduction to supervised machine learning, the architecture of basic artificial neural networks and their training algorithms, as well as more advanced architectures (convolutional networks, recurrent networks, transformers) and regularization and optimization techniques.
-
Modeling the economic dependence between town development policy and increasing energy effectiveness with neural networks. Case study: The town of Zielona Góra
Publikacja -
Flexible Knowledge–Vision–Integration Platform for Personal Protective Equipment Detection and Classification Using Hierarchical Convolutional Neural Networks and Active Leaning
PublikacjaThis work is part of an effort to develop of a Knowledge-Vision Integration Platform for Hazard Control (KVIP-HC) in industrial workplaces, adaptable to a wide range of industrial environments. The paper focuses on hazards resulted from the non-use of personal protective equipment (PPE). The objective is to test the capability of the platform to adapt to different industrial environments by simulating the process of randomly selecting...
-
Application of neural networks for identification of forcedness having effect on magnitude of turbine rotor vibration using pressure distribution in blade tip clearance.
PublikacjaW pracy sprawdzono, czy zastosowanie sieci neuronowych umożliwia identyfikację wymuszeń powstających w wyniku funkcjonowania maszyny jak i zależnych od jej stanu mechanicznego przy zastosowaniu rozkładu ciśnienia w uszczelnieniu nadbandażowym. Przeprowadzono pomiary rozkładu ciśnienia dla różnych warunków pracy, uwzględniając zmianę mimośrodu oraz zmianę skośnego ustawienia osi wirnika względem osi korpusu. Dokonano analiz przy...
-
Artificial Neural Networks in Engineering Conference
Konferencje -
European Symposium on Artificial Neural Networks
Konferencje -
International Conference on Artificial Neural Networks
Konferencje -
Activation maps of convolutional neural networks as a tool for brain degeneration tracking in early diagnosis of dementia in Parkinson's disease based on magnetic resonance imaging
Publikacja -
Modelowanie przepływu pary przez okołodźwiękowe wieńce turbinowe z użyciem sztucznych sieci neuronoych
PublikacjaNiniejszy artykuł stanowi opis modelu przepływu pary przez okołodźwiękowe stopnie turbinowe, stworzonego w oparciu o sztuczne sieci neuronowe (SSN). Przedstawiony model neuronowy pozwala na wyznaczenie rozkładu wybranych parametrów w analizowanym przekroju kanału przepływowego turbiny dla rozpatrywanego zakresu wartości ciśnienia wlotowego.
-
Productivity Enhancement by Prediction of Liquid Steel Breakout during Continuous Casting Process in Manufacturing of Steel Slabs in Steel Plant Using Artificial Neural Network with Backpropagation Algorithms
Publikacja -
Wiktoria Wojnicz dr hab. inż.
OsobyDSc in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2019 PhD in Mechanics (in the field of Biomechanics) - Lodz Univeristy of Technology, 2009 (with distinction) Publikacje z listy MNiSW (2009 - ) Wojnicz W., Wittbrodt E., Analysis of muscles' behaviour. Part I. The computational model of muscle. Acta of Bioengineering and Biomechanics, Vol. 11, No.4, 2009, p. 15-21 Wojnicz W., Wittbrodt E.,...
-
Conference on Artificial Neural Networks and Expert systems
Konferencje -
International Conference on Artificial Neural Networks and Genetic Algorithms
Konferencje -
International Work-Conference on Artificial and Natural Neural Networks
Konferencje