Wyniki wyszukiwania dla: CO-TRAINING
-
Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy
PublikacjaThe diabetic retinopathy is a disease caused by long-standing diabetes. Lack of effective treatment can lead to vision impairment and even irreversible blindness. The disease can be diagnosed by examining digital color fundus photographs of retina. In this paper we propose deep learning approach to automated diabetic retinopathy screening. Deep convolutional neural networks (CNN) - the most popular kind of deep learning algorithms...
-
Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks
PublikacjaIn this paper, the optical linear sensor, a representative of low-resolution sensors, was investigated in the multiclass recognition of near-field hand gestures. The recurrent neural network (RNN) with a gated recurrent unit (GRU) memory cell was utilized as a gestures classifier. A set of 27 gestures was collected from a group of volunteers. The 27 000 sequences obtained were divided into training, validation, and test subsets....
-
Psychosocial risks associated with the profession of train driver
PublikacjaExcellent competencies as well as a good physical and mental health are required in train drivers’ profession. Despite the changes in the structure of employment the train drivers above 46 years and job tenure longer than 30 years are the largest group. The generation gap is becoming more pronounced, and its fulfilment will not be easy. It is related not only to training of new personnel but also promotion of healthy work environment...
-
Performance-Based Nested Surrogate Modeling of Antenna Input Characteristics
PublikacjaUtilization of electromagnetic (EM) simulation tools is mandatory in the design of contemporary antenna structures. At the same time, conducting designs procedures that require multiple evaluations of the antenna at hand, such as parametric optimization or yield-driven design, is hindered by a high cost of accurate EM analysis. To certain extent, this issue can be addressed by utilization of fast replacement models (also referred...
-
Toward Sustainable Development: Exploring the Value and Benefits of Digital Twins
PublikacjaThe complexity and number of data streams generated by internal processes exceed the capabilities of most current simulation environments. Consequently, there is a need for the development of more advanced solutions that can handle any number of simultaneous simulations. One of the most promising ideas to address these and other challenges is the concept of a Digital Twin (DT), which refers to a digital representation or a virtual...
-
sp2-rich dendrite-like carbon nanowalls as effective electrode for environmental monitoring of explosive nitroaromatic
PublikacjaNitroaromatic compounds are commonly used explosive materials that pose a risk to human health and ecosystems due to their acute toxicity and carcinogenicity. Nitroaromatics have numerous pathways into the environment via discarded munitions (e.g. into the Baltic Sea after World War II), after use in mining operations, and in industrial run-off from factories producing these compounds (which are produced across the world to date)....
-
News that Moves the Market: DSEX-News Dataset for Forecasting DSE Using BERT
PublikacjaStock market is a complex and dynamic industry that has always presented challenges for stakeholders and investors due to its unpredictable nature. This unpredictability motivates the need for more accurate prediction models. Traditional prediction models have limitations in handling the dynamic nature of the stock market. Additionally, previous methods have used less relevant data, leading to suboptimal performance. This study...
-
Rapid Design of 3D Reflectarray Antennas by Inverse Surrogate Modeling and Regularization
PublikacjaReflectarrays (RAs) exhibit important advantages over conventional antenna arrays, especially in terms of realizing pencil-beam patterns without the employment of the feeding networks. Unfortunately, microstrip RA implementations feature narrow bandwidths, and are severely affected by losses. A considerably improved performance can be achieved for RAs involving grounded dielectric layers, which are also easy to manufacture using...
-
Assessing the attractiveness of human face based on machine learning
PublikacjaThe attractiveness of the face plays an important role in everyday life, especially in the modern world where social media and the Internet surround us. In this study, an attempt to assess the attractiveness of a face by machine learning is shown. Attractiveness is determined by three deep models whose sum of predictions is the final score. Two annotated datasets available in the literature are employed for training and testing...
-
Detecting type of hearing loss with different AI classification methods: a performance review
PublikacjaHearing is one of the most crucial senses for all humans. It allows people to hear and connect with the environment, the people they can meet and the knowledge they need to live their lives to the fullest. Hearing loss can have a detrimental impact on a person's quality of life in a variety of ways, ranging from fewer educational and job opportunities due to impaired communication to social withdrawal in severe situations. Early...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublikacjaMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Machine learning-based prediction of preplaced aggregate concrete characteristics
PublikacjaPreplaced-Aggregate Concrete (PAC) is a type of preplaced concrete where coarse aggregate is placed in the mold and a Portland cement-sand grout with admixtures is injected to fill the voids. Due to the complex nature of PAC, many studies were conducted to determine the effects of admixtures and the compressive and tensile strengths of PAC. Considering that a prediction tool is needed to estimate the compressive and tensile strengths...
-
Graph Neural Networks and Structural Information on Ionic Liquids: A Cheminformatics Study on Molecular Physicochemical Property Prediction
PublikacjaIonic liquids (ILs) provide a promising solution in many industrial applications, such as solvents, absorbents, electrolytes, catalysts, lubricants, and many others. However, due to the enormous variety of their structures, uncovering or designing those with optimal attributes requires expensive and exhaustive simulations and experiments. For these reasons, searching for an efficient theoretical tool for finding the relationship...
-
Intermolecular Interactions as a Measure of Dapsone Solubility in Neat Solvents and Binary Solvent Mixtures
PublikacjaDapsone is an effective antibacterial drug used to treat a variety of conditions. However, the aqueous solubility of this drug is limited, as is its permeability. This study expands the available solubility data pool for dapsone by measuring its solubility in several pure organic solvents: N-methyl-2-pyrrolidone (CAS: 872-50-4), dimethyl sulfoxide (CAS: 67-68-5), 4-formylmorpholine (CAS: 4394-85-8), tetraethylene pentamine (CAS:...
-
Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality
PublikacjaHigh-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...
-
How to teach architecture? – Remarks on the edge of Polish transformation processes after 1989
PublikacjaThe political changes in Poland after 1989 have resulted in a whole range of dynamic processes including the transformation of space. Until that time the established institutional framework for spatial, urban and architectural planning policy was based on uniform provisions of the so-called planned economy. The same applied to the training of architects, which was based on a unified profile of education provided at the state’s...
-
Variable‐fidelity modeling of antenna input characteristics using domain confinement and two‐stage Gaussian process regression surrogates
PublikacjaThe major bottleneck of electromagnetic (EM)-driven antenna design is the high CPU cost of massive simulations required by parametric optimization, uncertainty quantification, or robust design procedures. Fast surrogate models may be employed to mitigate this issue to a certain extent. Unfortunately, the curse of dimensionality is a serious limiting factor, hindering the construction of conventional data-driven models valid over...
-
On Inadequacy of Sequential Design of Experiments for Performance-Driven Surrogate Modeling of Antenna Input Characteristics
PublikacjaDesign of contemporary antennas necessarily involves electromagnetic (EM) simulation tools. Their employment is imperative to ensure evaluation reliability but also to carry out the design process itself, especially, the adjustment of antenna dimensions. For the latter, traditionally used parameter sweeping is more and more often replaced by rigorous numerical optimization, which entails considerable computational expenses, sometimes...
-
Employing Subjective Tests and Deep Learning for Discovering the Relationship between Personality Types and Preferred Music Genres
PublikacjaThe purpose of this research is two-fold: (a) to explore the relationship between the listeners’ personality trait, i.e., extraverts and introverts and their preferred music genres, and (b) to predict the personality trait of potential listeners on the basis of a musical excerpt by employing several classification algorithms. We assume that this may help match songs according to the listener’s personality in social music networks....
-
Three-dimensional modeling and automatic analysis of the human nasal cavity and paranasal sinuses using the computational fluid dynamics method
PublikacjaPurpose The goal of this study was to develop a complete workflow allowing for conducting computational fluid dynam- ics (CFD) simulation of airflow through the upper airways based on computed tomography (CT) and cone-beam computed tomography (CBCT) studies of individual adult patients. Methods This study is based on CT images of 16 patients. Image processing and model generation of the human nasal cavity and paranasal sinuses...
-
Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study
PublikacjaThe variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups...
-
Global Design Optimization of Microwave Circuits Using Response Feature Inverse Surrogates
PublikacjaModern microwave design has become heavily reliant on full-wave electromagnetic (EM) simulation tools, which are necessary for accurate evaluation of microwave components. Consequently, it is also indispensable for their development, especially the adjustment of geometry parameters, oriented towards performance improvement. However, EM-driven optimization procedures incur considerable computational expenses, which may become impractical...
-
Expedited Acquisition of Database Designs for Reduced-Cost Performance-Driven Modeling and Rapid Dimension Scaling of Antenna Structures
PublikacjaFast replacement models have been playing an increasing role in high-frequency electronics, including the design of antenna structures. Their role is to improve computational efficiency of the procedures that normally entail large numbers of expensive full-wave electromagnetic (EM) simulations, e.g., parametric optimization or uncertainty quantification. Recently introduced performance-driven modeling methods, such as the nested...
-
Segmentation Quality Refinement in Large-Scale Medical Image Dataset with Crowd-Sourced Annotations
PublikacjaDeployment of different techniques of deep learning including Convolutional Neural Networks (CNN) in image classification systems has accomplished outstanding results. However, the advantages and potential impact of such a system can be completely negated if it does not reach a target accuracy. To achieve high classification accuracy with low variance in medical image classification system, there is needed the large size of the...
-
The congruence of mental models in entrepreneurial teams – implications for performance and satisfaction in teams operating in an emerging economy
PublikacjaPurpose – The paper aims to explore the relationship between the congruence of mental models held by the members of entrepreneurial teams operating in an emerging economy (Poland) and entrepreneurial outcomes (performance and satisfaction). Design/methodology/approach – The data obtained from 18 nascent and 20 established entrepreneurial teams was analysed to answer hypotheses. The research was quantitative and was conducted using...
-
Low-Cost Modeling of Microwave Components by Means of Two-Stage Inverse/Forward Surrogates and Domain Confinement
PublikacjaFull-wave electromagnetic (EM) analysis is one of the most important tools in the design of modern microwave components and systems. EM simulation permits reliable evaluation of circuits at the presence of cross-coupling effects or substrate anisotropy, as well as for accounting for interactions with the immediate environment. However, repetitive analyses required by EM-driven procedures, such as parametric optimization or statistical...
-
Embedded gas sensing setup for air samples analysis
PublikacjaThis paper describes a measurement setup (eNose) designed to analyze air samples containing various volatile organic compounds (VOCs). The setup utilizes a set of resistive gas sensors of divergent gas selectivity and sensitivity. Some of the applied sensors are commercially available and were proposed recently to reduce their consumed energy. The sensors detect various VOCs at sensitivities determined by metal oxide sensors’ technology...
-
Development of an AI-based audiogram classification method for patient referral
PublikacjaHearing loss is one of the most significant sensory disabilities. It can have various negative effects on a person's quality of life, ranging from impeded school and academic performance to total social isolation in severe cases. It is therefore vital that early symptoms of hearing loss are diagnosed quickly and accurately. Audiology tests are commonly performed with the use of tonal audiometry, which measures a patient's hearing...
-
Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
PublikacjaNitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, model predictions...
-
Heavy Duty Vehicle Fuel Consumption Modelling Based on Exploitation Data by Using Artificial Neural Networks
PublikacjaOne of the ways to improve the fuel economy of heavy duty trucks is to operate the combustion engine in its most efficient operating points. To do that, a mathematical model of the engine is required, which shows the relations between engine speed, torque and fuel consumption in transient states. In this paper, easy accessible exploitation data collected via CAN bus of the heavy duty truck were used to obtain a model of a diesel...
-
Marking the Allophones Boundaries Based on the DTW Algorithm
PublikacjaThe paper presents an approach to marking the boundaries of allophones in the speech signal based on the Dynamic Time Warping (DTW) algorithm. Setting and marking of allophones boundaries in continuous speech is a difficult issue due to the mutual influence of adjacent phonemes on each other. It is this neighborhood on the one hand that creates variants of phonemes that is allophones, and on the other hand it affects that the border...
-
Occupational Health and Safety in the World of Digitalizing Work
PublikacjaWhen employees have a sense of work well-being and safety, so shall the employer organization thrive. In the digitized work content, also called the Forth Industrial Revolution or Industry 4.0, employer organizations prioritize faster or efficient production with ever more precise decision-making, entirely and workflow for task accomplishment of which employees and employer organizations are learning “on-the-go” how to manage the...
-
Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis
PublikacjaThe significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic...
-
A Mammography Data Management Application for Federated Learning
PublikacjaThis study aimed to develop and assess an application designed to enhance the management of a local client database consisting of mammographic images with a focus on ensuring that images are suitably and uniformly prepared for federated learning applications. The application supports a comprehensive approach, starting with a versatile image-loading function that supports DICOM files from various medical imaging devices and settings....
-
A Parallel Corpus-Based Approach to the Crime Event Extraction for Low-Resource Languages
PublikacjaThese days, a lot of crime-related events take place all over the world. Most of them are reported in news portals and social media. Crime-related event extraction from the published texts can allow monitoring, analysis, and comparison of police or criminal activities in different countries or regions. Existing approaches to event extraction mainly suggest processing texts in English, French, Chinese, and some other resource-rich...
-
Enhancing Renal Tumor Detection: Leveraging Artificial Neural Networks in Computed Tomography Analysis
PublikacjaRenal cell carcinoma is one of the most common cancers in Europe, with a total incidence rate of 18.4 cases per 100 000 population. There is currently significant overdiagnosis (11% to 30.9%) at times of planned surgery based on radiological studies. The purpose of this study was to create an artificial neural network (ANN) solution based on computed tomography (CT) images as an additional tool to improve the differentiation of...
-
Computationally-Efficient Statistical Design and Yield Optimization of Resonator-Based Notch Filters Using Feature-Based Surrogates
PublikacjaModern microwave devices are designed to fulfill stringent requirements pertaining to electrical performance, which requires, among others, a meticulous tuning of their geometry parameters. When moving up in frequency, physical dimensions of passive microwave circuits become smaller, making the system performance increasingly susceptible to manufacturing tolerances. In particular, inherent inaccuracy of fabrication processes affect...
-
Autonomous pick-and-place system based on multiple 3Dsensors and deep learning
PublikacjaGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Autonomous Perception and Grasp Generation Based on Multiple 3D Sensors and Deep Learning
PublikacjaGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Melanoma skin cancer detection using mask-RCNN with modified GRU model
PublikacjaIntroduction: Melanoma Skin Cancer (MSC) is a type of cancer in the human body; therefore, early disease diagnosis is essential for reducing the mortality rate. However, dermoscopic image analysis poses challenges due to factors such as color illumination, light reflections, and the varying sizes and shapes of lesions. To overcome these challenges, an automated framework is proposed in this manuscript. Methods: Initially, dermoscopic...
-
The future of the logistician education in Poland and Ukraine: comparative analysis of the student’s opinion
PublikacjaBackground: A professional future is the next logical step after a student completes their chosen degree course. More frequently, even during their studies, young people seek opportunities to participate in various conferences, training courses, internships, work placements, and to travel abroad, etc. All of this has one main goal - to increase the student's attractiveness as a potential employee on the labour market. Thus, it...
-
Rapid tolerance‐aware design of miniaturized microwave passives by means of confined‐domain surrogates
PublikacjaThe effects of uncertainties, primarily manufacturing tolerances but also incomplete information about operating conditions or material parameters, can be detrimental to the performance of microwave components. Quantification of such effects is essential to ensure a meaningful evaluation of the structure, in particular, its reliability under imperfect fabrication procedures. The improvement of the circuit robustness can be achieved...
-
Expedited Yield Optimization of Narrow- and Multi-Band Antennas Using Performance-Driven Surrogates
PublikacjaUncertainty quantification is an important aspect of engineering design, also pertaining to the development and performance evaluation of antenna systems. Manufacturing tolerances as well as other types of uncertainties, related to material parameters (e.g., substrate permittivity) or operating conditions (e.g., bending) may affect the antenna characteristics. In the case of narrow- or multi-band antennas, this usually leads to...
-
Computationally Efficient Surrogate-Assisted Design of Pyramidal-Shaped 3D Reflectarray Antennas
PublikacjaReflectarrays (RAs) have been attracting considerable interest in the recent years due to their appealing features, in particular, a possibility of realizing pencil-beam radiation patterns, as in the phased arrays, but without the necessity of incorporating the feeding networks. These characteristics make them attractive solutions, among others, for satellite communications or mobile radar antennas. Notwithstanding, available microstrip...
-
The effects of relational and psychological capital on work engagement: the mediation of learning goal orientation
PublikacjaPurpose – This paper proposes a research model in which learning goal orientation (LGO) mediates the impacts of relational capital and psychological capital (PsyCap) on work engagement. Design/methodology/approach – Data obtained from 475 managers and employees in the manufacturing and service industries in Poland were utilized to assess the linkages given above. Common method variance was controlled by the unmeasured latent method...
-
Pealizacija inicjatiw wostocznogo partnerstwa w Azerbajdżane
PublikacjaAzerbaijan established political relations with the EU during the implementation of TACIS Programme projects and signed the Partnership and Cooperation Agreement with the EU in 1996. It joined the European Neighbourhood Policy in 2004 and the Eastern Partnership programme in 2009. Despite the sceptical attitude taken by Azerbaijan's government towards the Eastern Partnership initiative, the EU earmarked further funds for Azerbaijan for 2011 – 2014 as part of the European Neighbourhood and Partnership Instrument. During the third Eastern Partnership summit in Vilnius in November 2013, Azerbaijan signed only an agreement concerning visa facilitations and readmission. However, it also undertook certain measures as part of the five Eastern Partnership initiatives. In the framework of the Integrated Border Management Programme, Azerbaijan implemented projects connected with improving the access of resettled people to the judicial system, creation of electronic border control systems, social protection, increasing public awareness to eliminate domestic violence, improving assimilation of asylum - seekers and immigrants, and supporting occupational health organisations. Activities aimed at supporting SMEs included training for entrepreneurs, promotional conferences and loans to the SME sector. Recommendations of the initiative promoting the creation of regional electrical and renewable energy markets were implemented by Azerbaijan in the form of 33 projects as part of the INOGATE Programme. With respect to environmental management, Azerbaijan developed a digital regional atlas of natural disasters, and with respect to natural disaster mitigation it planned population protection measures. Azerbaijan was ranked last but one in the evaluation presented in the annual report prepared by the EU. The transformation process in this country has been slow and illusory in certain aspects. Nevertheless, the EU has continued its Eastern Partnership initiative activities, allocating between EUR 252,000 and 308,000 for transformations in Azerbaijan
-
User -friendly E-learning Platform: a Case Study of a Design Thinking Approach Use
PublikacjaE-learning systems are very popular means to support the teaching process today. These systems are mainly used by universities as well as by commercial training centres. We analysed several popular e-learning platforms used in Polish universities and find them very unfriendly for the users. For this reason, the authors began the work on the creation of a new system that would be not only useful, but also usable for students, teachers...
-
BETWEEN IDEA AND INTERPRETATION - DESIGN PROCESS AUGMENTATION
PublikacjaThe following paper investigates the idea of reducing the human digital intervention to a minimum during the advanced design process. Augmenting the outcome attributes beyond the designer's capabilities by computational design methods, data collection, data computing and digital fabrication, altogether imitating the human design process. The primary technical goal of the research was verification of restrictions and abilities used...
-
A Data-Driven Comparative Analysis of Machine-Learning Models for Familial Hypercholesterolemia Detection
PublikacjaThis study presents an assessment of familial hypercholesterolemia (FH) probability using different algorithms (CatBoost, XGBoost, Random Forest, SVM) and its ensembles, leveraging electronic health record data. The primary objective is to explore an enhanced method for estimating FH probability, surpassing the currently recommended Dutch Lipid Clinic Network (DLCN) Score. The models were trained using the largest Polish cohort...
-
Forecasting energy consumption and carbon dioxide emission of Vietnam by prognostic models based on explainable machine learning and time series
PublikacjaThis study assessed the usefulness of algorithms in estimating energy consumption and carbon dioxide emissions in Viet- nam, in which the training dataset was used to train the models linear regression, random forest, XGBoost, and AdaBoost, allowing them to comprehend the patterns and relationships between population, GDP, and carbon dioxide emissions, energy consumption. The results revealed that random forest, XGBoost, and AdaBoost...