Filtry
wszystkich: 548
Wyniki wyszukiwania dla: SEMANTIC SEGMENTATION, NOISY ANNOTATIONS, LOSS MASKING, DEEP NEURAL NETWORKS
-
Surface EMG-based signal acquisition for decoding hand movements
Dane BadawczeBiosignal processing plays a crucial role in modern hand prosthetics. The challenge is to restore functionality of a lost limb based on the signals acquired from the surface of the stump. The number of sensors (emg channels) used for signal acquisition influence the quality of a prosthetic hand. Modern algorithms (including neural networks) can significantly...
-
Fading Modelling in Dynamic Off-Body Channels
PublikacjaThis paper presents an off-body fading channel model for Body Area Networks. The proposed model, based on both simulations and measurements at 2.45 GHz in a realistic indoor environment, consists of three components: mean path loss, body shadowing, and multipath fading. The first is modelled as a log function of distance, the path loss exponent being in between 0.4 and 1.6. A statistical perspective is taken for the other two components,...
-
Machine Learning in Multi-Agent Systems using Associative Arrays
PublikacjaIn this paper, a new machine learning algorithm for multi-agent systems is introduced. The algorithm is based on associative arrays, thus it becomes less complex and more efficient substitute of artificial neural networks and Bayesian networks, which is confirmed by performance measurements. Implementation of machine learning algorithm in multi-agent system for aided design of selected control systems allowed to improve the performance...
-
Expert systems in assessing the construction process safety taking account of the risk of disturbances
PublikacjaThe objective of the paper is to present the issue of safety manage-ment during the construction process. Threats in the form of disturb-ances may occur in the preparatory phase, during the execution of the construction project and also during its operational use. The arti-cle presents the concept of applying the methodology based, among others, on Learning Bayesian Networks, Artificial Neural Networks and Support Vector Machine,...
-
INVESTIGATION OF THE LOMBARD EFFECT BASED ON A MACHINE LEARNING APPROACH
PublikacjaThe Lombard effect is an involuntary increase in the speaker’s pitch, intensity, and duration in the presence of noise. It makes it possible to communicate in noisy environments more effectively. This study aims to investigate an efficient method for detecting the Lombard effect in uttered speech. The influence of interfering noise, room type, and the gender of the person on the detection process is examined. First, acoustic parameters...
-
Sathwik Prathapagiri
OsobySathwik was born in 2000. In 2022, he completed his Master’s of Science in Biological Sciences and Bachelor’s of Engineering in Chemical Engineering in an integrated dual degree program from Birla Institute Of Technology And Science, Pilani, India. During his final year, he worked as a research intern under Dr Giri P Krishnan at Bazhenov lab, University of California San Diego school of medicine to pursue his Master’s Thesis on...
-
Performance analysis of an rfid-based 3d indoor positioning system combining scene analysis and neural network methods
PublikacjaThe main purpose of this research is to improve localization accuracy of an active Radio Frequency Identification, RFID tag, in 3D indoor space. The paper presents a new RFID based 3D Indoor Positioning System which shows performance improvement. The proposed positioning system combines two methods: the Scene Analysis technique and Artificial Neural Network. The results of both simulation using Log-Distance Path Loss Model and...
-
Sztuczne sieci neuronowe oraz metoda wektorów wspierających w bankowych systemach informatycznych
PublikacjaW artykule zaprezentowano wybrane metod sztucznej inteligencji do zwiększania efektywności bankowych systemów informatycznych. Wykorzystanie metody wektorów wspierających czy sztucznych sieci neuronowych w połączeniu z nowoczesną technologią mikroprocesorową umożliwia znaczący wzrost konkurencyjności banku poprzez dodanie nowych funkcjonalności. W rezultacie możliwe jest także złagodzenie skutków kryzysu finansowego.
-
Data fusion of sparse, heterogeneous, and mobile sensor devices using adaptive distance attention
PublikacjaIn environmental science, where information from sensor devices are sparse, data fusion for mapping purposes is often based on geostatistical approaches. We propose a methodology called adaptive distance attention that enables us to fuse sparse, heterogeneous, and mobile sensor devices and predict values at locations with no previous measurement. The approach allows for automatically weighting the measurements according to a priori...
-
Comparative study on the effectiveness of various types of road traffic intensity detectors
PublikacjaVehicle detection and speed measurements are crucial tasks in traffic monitoring systems. In this work, we focus on several types of electronic sensors, operating on different physical principles in order to compare their effectiveness in real traffic conditions. Commercial solutions are based on road tubes, microwave sensors, LiDARs, and video cameras. Distributed traffic monitoring systems require a high number of monitoring...
-
Pedestrian detection in low-resolution thermal images
PublikacjaOver one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...
-
An Off-Body Narrowband and Ultra-Wide Band Channel Model for Body Area Networks in a Ferry Environment
PublikacjaIn the article an off-body narrowband and ultra-wide band channel model for Body Area Networks in a ferry environment is described. A mobile, heterogeneous measurement stand, that consists of three types of devices: miniaturized mobile nodes, stationary reference nodes and a data acquisition server was developed. A detailed analysis of both radio channels parameters in untypical indoor environment was carried out. An analysis of...
-
Applying Decisional DNA to Internet of Things: The Concept and Initial Case Study
PublikacjaIn this article, we present a novel approach utilizing Decisional DNA to help the Internet of Things capture decisional events and reuse them for decision making in future operations. The Decisional DNA is a domain-independent, standard and flexible knowledge representation structure that allows its domains to acquire, store, and share experiential knowledge and formal decision events in an explicit way. We apply this approach...
-
Path Loss Analysis for the IoT Applications in the Urban and Indoor Environments
PublikacjaThe Internet of Things (IoT) networks concept implies their presence in a various and untypical locations, usually with a disturbed radio signals propagation. In the presented paper an investigation of an additional path loss observed in an underground environment was described. The proposed measurement locations correspond to the operation areas of rapidly growing narrowband IoT (NBIoT) networks, the ones using the Long Term Evolution...
-
Minimizing Distribution and Data Loading Overheads in Parallel Training of DNN Acoustic Models with Frequent Parameter Averaging
PublikacjaIn the paper we investigate the performance of parallel deep neural network training with parameter averaging for acoustic modeling in Kaldi, a popular automatic speech recognition toolkit. We describe experiments based on training a recurrent neural network with 4 layers of 800 LSTM hidden states on a 100-hour corpora of annotated Polish speech data. We propose a MPI-based modification of the training program which minimizes the...
-
AUTOMATED NEGOTIATIONS OVER COLLABORATION PROTOCOL AGREEMENTS
PublikacjaThe dissertation focuses on the augmentation of proactive document - agents with built-in intelligence to recognize execution context provided by devices visited during a business process, and to reach collaboration agreement despite conflicting requirements. The proposed solution, based on intelligent bargaining using neural networks to improve simple multi-issue negotiation between the document and thedevice, requires practically...
-
Knowledge representation of motor activity of patients with Parkinson’s disease
PublikacjaAn approach to the knowledge representation extraction from biomedical signals analysis concerning motor activity of Parkinson disease patients is proposed in this paper. This is done utilizing accelerometers attached to their body as well as exploiting video image of their hand movements. Experiments are carried out employing artificial neural networks and support vector machine to the recognition of characteristic motor activity...
-
Selection of Features for Multimodal Vocalic Segments Classification
PublikacjaEnglish speech recognition experiments are presented employing both: audio signal and Facial Motion Capture (FMC) recordings. The principal aim of the study was to evaluate the influence of feature vector dimension reduction for the accuracy of vocalic segments classification employing neural networks. Several parameter reduction strategies were adopted, namely: Extremely Randomized Trees, Principal Component Analysis and Recursive...
-
Towards Designing an Innovative Industrial Fan: Developing Regression and Neural Models Based on Remote Mass Measurements
PublikacjaThis article presents the process of the construction and testing a remote, fully autonomous system for measuring the operational parameters of fans. The measurement results obtained made it possible to create and verify mathematical models using linear regression and neural networks. The process was implemented as part of the first stage of an innovative project. The article presents detailed steps of constructing a system to...
-
LSTM-based method for LOS/NLOS identification in an indoor environment
PublikacjaDue to the multipath propagation, harsh indoor environment significantly impacts transmitted signals which may adversely affect the quality of the radiocommunication services, with focus on the real-time ones. This negative effect may be significantly reduced (e.g. resources management and allocation) or compensated (e.g. correction of position estimation in radiolocalisation) by the LOS/NLOS identification algorithm. This paper...
-
General concept of reduction process for big data obtained by interferometric methods
PublikacjaInterferometric sonar systems apply the phase content of the sonar signal to measure the angle of a wave front returned from the seafloor or from a target. It collect a big data – datasets that are so large or complex that traditional data processing application software is inadequate to deal with them. The recording a large number of data is associated with the difficulty of their efficient use. So data have to be reduced. The main...
-
Problems of modelling toxic compounds emitted by a marine internal combustion engine in unsteady states
PublikacjaContemporary engine tests are performed based on the theory of experiment. The available versions of programmes used for analysing experimental data make frequent use of the multiple regression model, which enables examining effects and interactions between input model parameters and a single output variable. The use of multi-equation models provides more freedom in analysing the measured results, as those models enable simultaneous...
-
Simulating Power Generation from Photovoltaics in the Polish Power System Based on Ground Meteorological Measurements—First Tests Based on Transmission System Operator Data
PublikacjaThe Polish power system is undergoing a slow process of transformation from coal to one that is renewables dominated. Although coal will remain a fundamental fuel in the coming years, the recent upsurge in installed capacity of photovoltaic (PV) systems should draw significant attention. Owning to the fact that the Polish Transmission System Operator recently published the PV hourly generation time series in this article, we aim...
-
Variable Data Structures and Customized Deep Learning Surrogates for Computationally Efficient and Reliable Characterization of Buried Objects
PublikacjaIn this study, in order to characterize the buried object via deep-learning-based surrogate modeling approach, 3-D full-wave electromagnetic simulations of a GPR model has been used. The task is to predict simultaneously and independent of each characteristic parameters of a buried object of several radii at different positions (depth and lateral position) in various dispersive subsurface media. This study has analyzed variable...
-
Interpretable deep learning approach for classification of breast cancer - a comparative analysis of multiple instance learning models
PublikacjaBreast cancer is the most frequent female cancer. Its early diagnosis increases the chances of a complete cure for the patient. Suitably designed deep learning algorithms can be an excellent tool for quick screening analysis and support radiologists and oncologists in diagnosing breast cancer.The design of a deep learning-based system for automated breast cancer diagnosis is not easy due to the lack of annotated data, especially...
-
Wykorzystanie sztucznych sieci neuronowych do szacowania wpływu drgań na budynki jednorodzinne
PublikacjaW artykule przedstawiono metodę prognozowania wpływu drgań na budynki mieszkalne z wykorzystaniem sztucznych sieci neuronowych. Drgania komunikacyjne mogą doprowadzić do uszkodzenia elementów konstrukcyjnych, a nawet do awarii budynku. Najczęstszym efektem są jednak rysy, pękanie tynku i wypraw. Metody oparte na sztucznej inteligencji są przybliżone, ale stanowią wystarczająco dokładną i ekonomiczną alternatywę dla tradycyjnych...
-
A gap waveguide-based mechanically reconfigurable phase shifter for high-power Ku-band applications
PublikacjaThis paper presents a novel design of a low-loss, reconfgurable broadband phase shifter based on groove gap waveguide (GGW) technology. The proposed phase shifter consists of a folded GGW and three bends with a few pins forming the GGW and one bend attached to a movable plate. This movable plate allows for adjustments to the folded waveguide length, consequently altering the phase of electromagnetic waves. The advantage of GGW...
-
The influence of time of hearing aid use on auditory perception in various acoustic situations
PublikacjaThe assessment of sound perception in hearing aids, especially in the context of benefits that a prosthesis can bring, is a complex issue. The objective parameters of the hearing aids can easily be determined. These parameters, however, do not always have a direct and decisive influence on the subjective assessment of quality of the patient’s hearing while using a hearing aid. The paper presents the development of a method for...
-
Measurement Stand and Methodology for Research of the Off-Body and Body-to-Body Radio Channels in WBANs with Different Diversity Schemes
PublikacjaThe concept of an experimental test bed for system loss and channel impulse response measurements for off-body and body-to-body radio channels in wireless body area networks (WBANs) is fully described. The possible measurement scenarios that may occur in investigation of off-body and body-to-body channels are classified and described in detail. Additionally, an evaluation is provided of the standard and expanded uncertainties of...
-
Metody sztucznej inteligencji do wspomagania bankowych systemów informatycznych
PublikacjaW pracy opisano zastosowania nowoczesnych metod sztucznej inteligencji do wspomagania bankowych systemów informatycznych. Wykorzystanie w systemach informatycznych algorytmów ewolucyjnych, harmonicznych, czy sztucznych sieci neuronowych w połączeniu z nowoczesną technologią mikroprocesorową umożliwiają zasadniczy wzrost konkurencyjności banku. Dlatego w pracy omówiono wybrane zastosowania bankowe ze szczególnym uwzględnieniem zbliżeniowych...
-
Simulator for Performance Evaluation of ASON/GMPLS Network
PublikacjaThe hierarchical control plane network architecture of Automatically Switched Optical Network with utilization of Generalized Multi-Protocol Label Switching protocols is compliant to next generation networks requirements and can supply connections with required quality of service, even with incomplete domain information. Considering connection control, connection management and network management, the controllers of this architecture...
-
Adaptacyjny algorytm filtracji sygnału fonokardiograficznego wykorzystujący sztuczną sieć neuronową
PublikacjaPodstawowym problemem podczas projektowania systemu autodiagnostyki chorób serca, bazującego na analizie sygnału fonokardiograficznego (PCG), jest konieczność zapewnienia, niezależnie od warunków zewnętrznych, sygnału o wysokiej jakości. W artykule, bazując na zdolności Sztucznej Sieci Neuronowej (SSN) do predykcji sygnałów periodycznych oraz quasi-periodycznych, został opracowany adaptacyjny algorytm filtracji dźwięków serca....
-
A Novel Method for the Deblurring of Photogrammetric Images Using Conditional Generative Adversarial Networks
PublikacjaThe visual data acquisition from small unmanned aerial vehicles (UAVs) may encounter a situation in which blur appears on the images. Image blurring caused by camera motion during exposure significantly impacts the images interpretation quality and consequently the quality of photogrammetric products. On blurred images, it is difficult to visually locate ground control points, and the number of identified feature points decreases...
-
CMGNet: Context-aware middle-layer guidance network for salient object detection
PublikacjaSalient object detection (SOD) is a critical task in computer vision that involves accurately identifying and segmenting visually significant objects in an image. To address the challenges of gridding issues and feature...
-
An Off-Body Channel Model for Body Area Networks in Indoor Environments
PublikacjaThis paper presents an off-body channel model for body area networks (BANs) in indoor environments. The proposed model, which is based on both simulations and measurements in a realistic environment, consists of three components: mean path loss, body shadowing, and multipath fading. Seven scenarios in a realistic indoor office environment containing typical scatterers have been measured: five were static (three standing and two...
-
Fading Modelling in Dynamic Off-Body Channels
PublikacjaThis paper presents an off-body fading channel model for Body Area Networks (BANs) in indoor environments. The proposed model, which is based on both simulations and measurements in a realistic environment, consists of three components: mean path loss, body shadowing, and multipath fading. Seven scenarios in an indoor environment (a medium-size room with furniture, mostly consisting of wooden tables and chairs) have been measured:...
-
Collaborative Data Acquisition and Learning Support
PublikacjaWith the constant development of neural networks, traditional algorithms relying on data structures lose their significance as more and more solutions are using AI rather than traditional algorithms. This in turn requires a lot of correctly annotated and informative data samples. In this paper, we propose a crowdsourcing based approach for data acquisition and tagging with support for Active Learning where the system acts as an...
-
Evaluating Performance and Accuracy Improvements for Attention-OCR
PublikacjaIn this paper we evaluated a set of potential improvements to the successful Attention-OCR architecture, designed to predict multiline text from unconstrained scenes in real-world images. We investigated the impact of several optimizations on model’s accuracy, including employing dynamic RNNs (Recurrent Neural Networks), scheduled sampling, BiLSTM (Bidirectional Long Short-Term Memory) and a modified attention model. BiLSTM was...
-
Signal Processing in the Investigation of Two-phase Liquid-gas Flow by Gamma-ray Absorption
Publikacjan this paper, the use of the gamma-absorption method applied in the investigation of the two-phase liquid-gas flow in the pipeline is described. An example of its application to the air transported by water in a horizontal pipeline is evaluated. In the measurements, Am-241 radioactive sources and probes with Nal (Tl) scintillation crystals have been used. The signals from the radiometric set were used to determine the velocity...
-
Solvent Screening for Solubility Enhancement of Theophylline in Neat, Binary and Ternary NADES Solvents: New Measurements and Ensemble Machine Learning
PublikacjaTheophylline, a typical representative of active pharmaceutical ingredients, was selected to study the characteristics of experimental and theoretical solubility measured at 25 °C in a broad range of solvents, including neat, binary mixtures and ternary natural deep eutectics (NADES) prepared with choline chloride, polyols and water. There was a strong synergistic effect of organic solvents mixed with water, and among the experimentally...
-
Improved Modeling of Microwave Structures Using Performance-Driven Fully-Connected Regression Surrogate
PublikacjaFast replacement models (or surrogates) have been widely applied in the recent years to accelerate simulation-driven design procedures in microwave engineering. The fundamental reason is a considerable—and often prohibitive—CPU cost of massive full-wave electromagnetic (EM) analyses related to solving common tasks such as parametric optimization or uncertainty quantification. The most popular class of surrogates are data-driven...
-
International Conference on Computational Collective Intelligence (International Conference on Computational Collective Intelligence: Semantic Web, Social Networks and Multiagent Systems)
Konferencje -
Akustyczna analiza natężenia ruchu drogowego dla systemów zarządzania ruchem
PublikacjaW pracy przybliżono wybrane zagadnienia z dziedziny zarządzania transportem drogowym w Polsce i na świecie. W tym kontekście pzredstawiono potrzeby rynkowe, wymagania jak i możliwości w zakresie pozyskiwania informacji o aktualnym stanie sieci drogowych. Zaproponowano akustyczną metodę nadzorowania ruchu drogowego i jej możliwości w kontekście systemów zarządzania ruchem. Przedstawiono schemat akwizycji sygnału wraz z danymi odniesienia....
-
Zastosowanie sieci neuronowych do detekcji impulsów o znanym kształcie w obecności silnego szumu i trendu
PublikacjaDetekcja impulsów w odebranym sygnale radiowym, zwłaszcza w obecności silnego szumu oraz trendu, jest trudnym zadaniem. Artykuł przedstawia propozycje rozwiązań wykorzystujących sieci neuronowe do detekcji impulsów o znanym kształcie w obecności silnego szumu i trendu. Na potrzeby realizacji tego zadania zaproponowano dwie architektury. W pracy przedstawiono wyniki badań wpływu kształtu impulsu, mocy zakłóceń szumowych oraz trendu...
-
Monitoring the gas turbine start-up phase on the platform using a hierarchical model based on Multi-Layer Perceptron networks
PublikacjaVery often, the operation of diagnostic systems is related to the evaluation of process functionality, where the diagnostics is carried out using reference models prepared on the basis of the process description in the nominal state. The main goal of the work is to develop a hierarchical gas turbine reference model for the estimation of start-up parameters based on multi-layer perceptron neural networks. A functional decomposition...
-
Musical Instrument Identification Using Deep Learning Approach
PublikacjaThe work aims to propose a novel approach for automatically identifying all instruments present in an audio excerpt using sets of individual convolutional neural networks (CNNs) per tested instrument. The paper starts with a review of tasks related to musical instrument identification. It focuses on tasks performed, input type, algorithms employed, and metrics used. The paper starts with the background presentation, i.e., metadata...
-
Silent Signals The Covert Network Shaping the Future
PublikacjaSilent Signals The Covert Network Shaping the Future In a world dominated by information flow and rapid technological advancements, the existence of hidden networks and unseen influences has never been more relevant. "Silent Signals: The Covert Network Shaping the Future" delves deep into the mysterious and often opaque world of covert communication networks. This influential work sheds light on the silent...
-
Application of gas chromatographic data and 2D molecular descriptors for accurate global mobility potential prediction
PublikacjaMobility is a key feature affecting the environmental fate, which is of particular importance in the case of persistent organic pollutants (POPs) and emerging pollutants (EPs). In this study, the global mobility classification artificial neural networks-based models employing GC retention times (RT) and 2D molecular descriptors were constructed and validated. The high usability of RT was confirmed based on the feature selection...
-
Karol Flisikowski dr inż.
OsobyKarol Flisikowski jest profesorem uczelni w Katedrze Statystyki i Ekonometrii, Wydziału Zarządzania i Ekonomii Politechniki Gdańskiej. Jest odpowiedzialny jest za prowadzenie zajęć ze statystyki opisowej i matematycznej (w języku polskim i angielskim), a także badań naukowych w zakresie statystyki społecznej. Był uczestnikiem wielu konferencji o zasięgu krajowym, jak i międzynarodowym, gdzie prezentował wyniki prowadzonych przez...
-
AUTOMATYCZNA KLASYFIKACJA MOWY PATOLOGICZNEJ
PublikacjaAplikacja przedstawiona w niniejszym rozdziale służy do automatycznego wykrywania mowy patologicznej na podstawie bazy nagrań. W pierwszej kolejności przedstawiono założenia leżące u podstaw przeprowadzonych badan wraz z wyborem bazy mowy patologicznej. Zaprezentowano również zastosowane algorytmy oraz cechy sygnału mowy, które pozwalają odróżnić mowę niezaburzoną od mowy patologicznej. Wytrenowane sieci neuronowe zostały następnie...