Wyniki wyszukiwania dla: DOMINATION NUMBER, ALGORITHM, TREE
-
Lower bound on the domination number of a tree.
PublikacjaW pracy przedstawiono dolne ograniczenie na liczbę dominowania w drzewach oraz przedstawiono pełną charakterystykę grafów ekstremalnych.
-
Bounds on the vertex-edge domination number of a tree
PublikacjaA vertex-edge dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every edge of $G$ is incident with a vertex of $D$ or a vertex adjacent to a vertex of $D$. The vertex-edge domination number of a graph $G$, denoted by $\gamma_{ve}(T)$, is the minimum cardinality of a vertex-edge dominating set of $G$. We prove that for every tree $T$ of order $n \ge 3$ with $l$ leaves and $s$ support vertices we have $(n-l-s+3)/4...
-
Lower bound on the paired domination number of a tree
PublikacjaW pracy przedstawione jest ograniczenie dolne dla liczby dominowania parami oraz scharakteryzowane są wszystkie drzewa ekstremalne.
-
Lower bound on the weakly connected domination number of a tree
PublikacjaPraca dotyczy dolnego ograniczenia liczby dominowania słabo spójnego w drzewach (ograniczenie ze względu na ilość wierzchołków i ilość wierzchołków końcowych w drzewie).
-
Lower bound on the distance k-domination number of a tree
PublikacjaW artykule przedstawiono dolne ograniczenie na liczbę k-dominowania w drzewach oraz scharakteryzowano wszystkie grafy ekstremalne.
-
An Alternative Proof of a Lower Bound on the 2-Domination Number of a Tree
PublikacjaA 2-dominating set of a graph G is a set D of vertices of G such that every vertex not in D has a at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. Fink and Jacobson [n-domination in graphs, Graph theory with applications to algorithms and computer science, Wiley, New York, 1985, 283-300] established the following lower bound on the 2-domination...
-
A lower bound on the total outer-independent domination number of a tree
PublikacjaA total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The total outer-independent domination number of a graph G, denoted by gamma_t^{oi}(G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_t^{oi}(T) >= (2n-2l+2)/3,...
-
An upper bound on the 2-outer-independent domination number of a tree
PublikacjaA 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)D has a at least two neighbors in D, and the set V(G)D is independent. The 2-outer-independent domination number of a graph G, denoted by gamma_2^{oi}(G), is the minimum cardinality of a 2-outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_2^{oi}(T) <= (n+l)/2,...
-
An upper bound on the total outer-independent domination number of a tree
PublikacjaA total outer-independent dominating set of a graph G=(V(G),E(G)) is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The total outer-independent domination number of a graph G, denoted by gamma_t^{oi}(G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every tree T of order n >= 4, with l leaves and s support vertices we have...
-
An upper bound for the double outer-independent domination number of a tree
PublikacjaA vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V(G)\D is independent. The double outer-independent domination number of a graph G, denoted by γ_d^{oi}(G), is the minimum cardinality of a double outer-independent dominating set of G. We prove...
-
A lower bound on the double outer-independent domination number of a tree
PublikacjaA vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set V(G)D is independent. The double outer-independent domination number of a graph G, denoted by gamma_d^{oi}(G), is the minimum cardinality of a double outer-independent dominating set of G. We...
-
A self-stabilizing algorithm for finding a spanning tree in a polynomial number of moves
PublikacjaW pracy rozważa się rozproszony model obliczeń, w którym struktura systemu jest reprezentowana przez graf bezpośrednich połączeń komunikacyjnych. W tym modelu podajemy nowy samostabilizujący algorytm znajdowania drzewa spinającego. Zgodnie z naszą wiedzą jest to pierwszy algorytm dla tego problemu z gwarantowaną wielomianową liczbą ruchów.
-
On trees attaining an upper bound on the total domination number
PublikacjaA total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. The total domination number of a graph G, denoted by γ_t(G), is the minimum cardinality of a total dominating set of G. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International Journal of Graphs and Combinatorics 1 (2004), 69-75] established the following upper bound on the total domination...
-
Domination subdivision and domination multisubdivision numbers of graphs
PublikacjaThe domination subdivision number sd(G) of a graph G is the minimum number of edges that must be subdivided (where an edge can be subdivided at most once) in order to increase the domination number of G. It has been shown [10] that sd(T)<=3 for any tree T. We prove that the decision problem of the domination subdivision number is NP-complete even for bipartite graphs. For this reason we define the domination multisubdivision number...
-
Super Dominating Sets in Graphs
PublikacjaIn this paper some results on the super domination number are obtained. We prove that if T is a tree with at least three vertices, then n2≤γsp(T)≤n−s, where s is the number of support vertices in T and we characterize the extremal trees.
-
2-bondage in graphs
PublikacjaA 2-dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of V(G)D has at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. The 2-bondage number of G, denoted by b_2(G), is the minimum cardinality among all sets of edges E' subseteq E such that gamma_2(G-E') > gamma_2(G). If for every E' subseteq E we have...
-
Complexity Issues on of Secondary Domination Number
PublikacjaIn this paper we study the computational complexity issues of the problem of secondary domination (known also as (1, 2)-domination) in several graph classes. We also study the computational complexity of the problem of determining whether the domination and secondary domination numbers are equal. In particular, we study the influence of triangles and vertices of degree 1 on these numbers. Also, an optimal algorithm for finding...
-
Non-isolating 2-bondage in graphs
PublikacjaA 2-dominating set of a graph G=(V,E) is a set D of vertices of G such that every vertex of V(G)D has at least two neighbors in D. The 2-domination number of a graph G, denoted by gamma_2(G), is the minimum cardinality of a 2-dominating set of G. The non-isolating 2-bondage number of G, denoted by b_2'(G), is the minimum cardinality among all sets of edges E' subseteq E such that delta(G-E') >= 1 and gamma_2(G-E') > gamma_2(G)....
-
Non-isolating bondage in graphs
PublikacjaA dominating set of a graph $G = (V,E)$ is a set $D$ of vertices of $G$ such that every vertex of $V(G) \setminus D$ has a neighbor in $D$. The domination number of a graph $G$, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of $G$. The non-isolating bondage number of $G$, denoted by $b'(G)$, is the minimum cardinality among all sets of edges $E' \subseteq E$ such that $\delta(G-E') \ge 1$ and $\gamma(G-E')...
-
Phylogenetic analysis of Oncidieae subtribe - matK plastid region
Dane BadawczeThe dataset contains alignment and consensus matrix files, and results of phylogenetic analysis of plastid matK region from 186 orchid species considered to belong Oncidieae subtribe. Sequences were assessed from NCBI GeneBank (list of all records with identifiers in the separate file)
-
Phylogenetic analysis of Oncidieae subtribe - ITS1-5,8S-ITS2
Dane BadawczeThe dataset contains alignment and consensus matrix files, and results of phylogenetic analysis of ITS1- 5,8S-ITS2 region from 186 orchid species considered to belong Oncidieae subtribe. Sequences were assessed from NCBI GeneBank (list of all records with identifiers in the separate file)
-
On trees with double domination number equal to 2-domination number plus one
PublikacjaA vertex of a graph is said to dominate itself and all of its neighbors. A subset D subseteq V(G) is a 2-dominating set of G if every vertex of V(G)D is dominated by at least two vertices of D, while it is a double dominating set of G if every vertex of G is dominated by at least two vertices of D. The 2-domination (double domination, respectively) number of a graph G is the minimum cardinality of a 2-dominating (double dominating,...
-
On trees with double domination number equal to total domination number plus one
PublikacjaA total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. A vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The total (double, respectively) domination number of a graph G is the minimum cardinality of a total (double,...
-
On domination multisubdivision number of unicyclic graphs
PublikacjaThe paper continues the interesting study of the domination subdivision number and the domination multisubdivision number. On the basis of the constructive characterization of the trees with the domination subdivision number equal to 3 given in [H. Aram, S.M. Sheikholeslami, O. Favaron, Domination subdivision number of trees, Discrete Math. 309 (2009), 622–628], we constructively characterize all connected unicyclic graphs with...
-
TOTAL DOMINATION MULTISUBDIVISION NUMBER OF A GRAPH
PublikacjaThe domination multisubdivision number of a nonempty graph G was defined in [3] as the minimum positive integer k such that there exists an edge which must be subdivided k times to increase the domination number of G. Similarly we define the total domination multisubdivision number msd_t (G) of a graph G and we show that for any connected graph G of order at least two, msd_t (G) ≤ 3. We show that for trees the total domination...
-
Data obtained by computation for X-ray imaging of grating with magnification factor equal 2 using oriented Gaussian beams
Dane BadawczeThe propagation of X-ray waves through an optical system consisting of grating and X-ray refractive lenses is considered. In this approach, the propagating wave is represented as a superposition of the oriented Gaussian beams. The direction of wave propagation in each Gaussian beam is consistent with the local propagation direction of the X-ray wavefront.
-
Data obtained by computation for X-ray imaging of grating with magnification factor equal 4 using oriented Gaussian beams
Dane BadawczeThe propagation of X-ray waves through an optical system consisting of grating and X-ray refractive lenses is considered. In this approach, the propagating wave is represented as a superposition of the oriented Gaussian beams. The direction of wave propagation in each Gaussian beam is consistent with the local propagation direction of the X-ray wavefront.
-
Data obtained by computation for X-ray imaging of grating with magnification factor equal 8 using oriented Gaussian beams
Dane BadawczeThe propagation of X-ray waves through an optical system consisting of grating and X-ray refractive lenses is considered. In this approach, the propagating wave is represented as a superposition of the oriented Gaussian beams. The direction of wave propagation in each Gaussian beam is consistent with the local propagation direction of the X-ray wavefront.
-
On trees with double domination number equal to 2-outer-independent domination number plus one
PublikacjaA vertex of a graph is said to dominate itself and all of its neighbors. A double dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D. The double domination number of a graph G is the minimum cardinality of a double dominating set of G. For a graph G=(V,E), a subset D subseteq V(G) is a 2-dominating set if every vertex of V(G)D has at least two neighbors...
-
The convex domination subdivision number of a graph
PublikacjaLet G = (V;E) be a simple graph. A set D\subset V is a dominating set of G if every vertex in V - D has at least one neighbor in D. The distance d_G(u, v) between two vertices u and v is the length of a shortest (u, v)-path in G. An (u, v)-path of length d_G(u; v) is called an (u, v)-geodesic. A set X\subset V is convex in G if vertices from all (a, b)-geodesics belong to X for any two vertices a, b \in X. A set X is a convex dominating...
-
Isolation Number versus Domination Number of Trees
PublikacjaIf G=(VG,EG) is a graph of order n, we call S⊆VG an isolating set if the graph induced by VG−NG[S] contains no edges. The minimum cardinality of an isolating set of G is called the isolation number of G, and it is denoted by ι(G). It is known that ι(G)≤n3 and the bound is sharp. A subset S⊆VG is called dominating in G if NG[S]=VG. The minimum cardinality of a dominating set of G is the domination number, and it is denoted by γ(G)....
-
Influence of edge subdivision on the convex domination number
PublikacjaWe study the influence of edge subdivision on the convex domination number. We show that in general an edge subdivision can arbitrarily increase and arbitrarily decrease the convex domination number. We also find some bounds for unicyclic graphs and we investigate graphs G for which the convex domination number changes after subdivision of any edge in G.
-
Weakly convex domination subdivision number of a graph
PublikacjaA set X is weakly convex in G if for any two vertices a; b \in X there exists an ab–geodesic such that all of its vertices belong to X. A set X \subset V is a weakly convex dominating set if X is weakly convex and dominating. The weakly convex domination number \gamma_wcon(G) of a graph G equals the minimum cardinality of a weakly convex dominating set in G. The weakly convex domination subdivision number sd_wcon (G) is the minimum...
-
On the super domination number of lexicographic product graphs
PublikacjaThe neighbourhood of a vertexvof a graphGis the setN(v) of all verticesadjacent tovinG. ForD⊆V(G) we defineD=V(G)\D. A setD⊆V(G) is called a super dominating set if for every vertexu∈D, there existsv∈Dsuch thatN(v)∩D={u}. The super domination number ofGis theminimum cardinality among all super dominating sets inG. In this article weobtain closed formulas and tight bounds for the super dominating number oflexicographic product...
-
Coronas and Domination Subdivision Number of a Graph
PublikacjaIn this paper, for a graph G and a family of partitions P of vertex neighborhoods of G, we define the general corona G ◦P of G. Among several properties of this new operation, we focus on application general coronas to a new kind of characterization of trees with the domination subdivision number equal to 3.
-
Block graphs with large paired domination multisubdivision number
PublikacjaThe paired domination multisubdivision number of a nonempty graph G, denoted by msdpr(G), is the smallest positive integer k such that there exists an edge which must be subdivided k times to increase the paired domination number of G. It is known that msdpr(G) ≤ 4 for all graphs G. We characterize block graphs with msdpr(G) = 4.
-
Paired domination versus domination and packing number in graphs
PublikacjaGiven a graph G = (V(G), E(G)), the size of a minimum dominating set, minimum paired dominating set, and a minimum total dominating set of a graph G are denoted by γ (G), γpr(G), and γt(G), respectively. For a positive integer k, a k-packing in G is a set S ⊆ V(G) such that for every pair of distinct vertices u and v in S, the distance between u and v is at least k + 1. The k-packing number is the order of a largest kpacking and...
-
An Algorithm for Listing All Minimal 2-Dominating Sets of a Tree
PublikacjaWe provide an algorithm for listing all minimal 2-dominating sets of a tree of order n in time O(1.3248n) . This implies that every tree has at most 1.3248 n minimal 2-dominating sets. We also show that this bound is tigh.
-
An algorithm for listing all minimal double dominating sets of a tree
PublikacjaWe provide an algorithm for listing all minimal double dominating sets of a tree of order $n$ in time $\mathcal{O}(1.3248^n)$. This implies that every tree has at most $1.3248^n$ minimal double dominating sets. We also show that this bound is tight.
-
Some variants of perfect graphs related to the matching number, the vertex cover and the weakly connected domination number
PublikacjaGiven two types of graph theoretical parameters ρ and σ, we say that a graph G is (σ, ρ)- perfect if σ(H) = ρ(H) for every non-trivial connected induced subgraph H of G. In this work we characterize (γw, τ )-perfect graphs, (γw, α′)-perfect graphs, and (α′, τ )-perfect graphs, where γw(G), τ (G) and α′(G) denote the weakly connected domination number, the vertex cover number and the matching number of G, respectively. Moreover,...
-
Similarities and Differences Between the Vertex Cover Number and the Weakly Connected Domination Number of a Graph
PublikacjaA vertex cover of a graph G = (V, E) is a set X ⊂ V such that each edge of G is incident to at least one vertex of X. The ve cardinality of a vertex cover of G. A dominating set D ⊆ V is a weakly connected dominating set of G if the subgraph G[D]w = (N[D], Ew) weakly induced by D, is connected, where Ew is the set of all edges having at least one vertex in D. The weakly connected domination number γw(G) of G is the minimum cardinality...
-
All graphs with paired-domination number two less than their order
PublikacjaLet G=(V,E) be a graph with no isolated vertices. A set S⊆V is a paired-dominating set of G if every vertex not in S is adjacent with some vertex in S and the subgraph induced by S contains a perfect matching. The paired-domination number γp(G) of G is defined to be the minimum cardinality of a paired-dominating set of G. Let G be a graph of order n. In [Paired-domination in graphs, Networks 32 (1998), 199-206] Haynes and Slater...
-
The outer-connected domination number of a graph
PublikacjaW pracy została zdefiniowana liczba dominowania zewnętrznie spójnego i przedstawiono jej podstawowe własności.
-
On the total restrained domination number of a graph
PublikacjaW pracy przedstawione są ograniczenia i własności liczby dominowania podwójnie totalnego.
-
On the doubly connected domination number of a graph
PublikacjaW pracy została zdefiniowana liczba dominowania podwójnie spójnego i przedstawiono jej podstawowe własności.
-
Graphs with convex domination number close to their order
PublikacjaW pracy opisane są grafy z liczbą dominowania wypukłego bliską ilości ich wierzchołków.
-
Nordhaus-Gaddum results for the convex domination number of a graph
PublikacjaPraca dotyczy nierówności typu Nordhausa-Gadduma dla dominowania wypukłego.
-
Nordhaus-Gaddum results for the weakly convex domination number of a graph
PublikacjaArtykuł dotyczy ograniczenia z góry i z dołu (ze względu na ilość wierzchołków) sumy i iloczynu liczb dominowania wypukłego grafu i jego dopełnienia.
-
All graphs with restrained domination number three less than their order
PublikacjaW pracy opisana jest rodzina wszystkich grafów, dla których liczbadominowania zewnętrznego jest o trzy mniejsza od ich rzędu.
-
INFLUENCE OF A VERTEX REMOVING ON THE CONNECTED DOMINATION NUMBER – APPLICATION TO AD-HOC WIRELESS NETWORKS
PublikacjaA minimum connected dominating set (MCDS) can be used as virtual backbone in ad-hoc wireless networks for efficient routing and broadcasting tasks. To find the MCDS is an NP- complete problem even in unit disk graphs. Many suboptimal algorithms are reported in the literature to find the MCDS using local information instead to use global network knowledge, achieving an important reduction in complexity. Since a wireless network...