Filtry
wszystkich: 873
-
Katalog
Wyniki wyszukiwania dla: machine learning algorithmsupervised learningfracture loadfracture toughnessdata-driven techniquesprediction model
-
Machine learning for PhD students
Kursy OnlineAn introductory course in machine learning for PhD students from Department of Geotechnical and Hydraulic Engineering
-
A Proposed Machine Learning Model for Forecasting Impact of Traffic-Induced Vibrations on Buildings
PublikacjaTraffic-induced vibrations may cause various damages to buildings located near the road, including cracking of plaster, cracks in load-bearing elements or even collapse of the whole structure. Measurements of vibrations of real buildings are costly and laborious. Therefore the aim of the research is to propose the original numerical algorithm which allows us to predict, with high probability, the nega-tive dynamic impact of traffic-induced...
-
Model-Based Adaptive Machine Learning Approach in Concrete Mix Design
PublikacjaConcrete mix design is one of the most critical issues in concrete technology. This process aims to create a concrete mix which helps deliver concrete with desired features and quality. Contemporary requirements for concrete concern not only its structural properties, but also increasingly its production process and environmental friendliness, forcing concrete producers to use both chemically and technologically complex concrete...
-
A Data-Driven Comparative Analysis of Machine-Learning Models for Familial Hypercholesterolemia Detection
PublikacjaThis study presents an assessment of familial hypercholesterolemia (FH) probability using different algorithms (CatBoost, XGBoost, Random Forest, SVM) and its ensembles, leveraging electronic health record data. The primary objective is to explore an enhanced method for estimating FH probability, surpassing the currently recommended Dutch Lipid Clinic Network (DLCN) Score. The models were trained using the largest Polish cohort...
-
TensorHive: Management of Exclusive GPU Access for Distributed Machine Learning Workloads
PublikacjaTensorHive is a tool for organizing work of research and engineering teams that use servers with GPUs for machine learning workloads. In a comprehensive web interface, it supports reservation of GPUs for exclusive usage, hardware monitoring, as well as configuring, executing and queuing distributed computational jobs. Focusing on easy installation and simple configuration, the tool automatically detects the available computing...
-
A Review on Machine Learning Deployment Patterns and Key Features in the Prediction of Preeclampsia
PublikacjaPrevious reviews have investigated machine learning (ML) models used to predict the risk of developing preeclampsia. However, they have not addressed the intended deployment of these models throughout pregnancy, nor have they detailed feature performance. This study aims to provide an overview of existing ML models and their intended deployment patterns and performance, along with identified features of high importance. This review...
-
Active Learning on Ensemble Machine-Learning Model to Retrofit Buildings Under Seismic Mainshock-Aftershock Sequence
PublikacjaThis research presents an efficient computational method for retrofitting of buildings by employing an active learning-based ensemble machine learning (AL-Ensemble ML) approach developed in OpenSees, Python and MATLAB. The results of the study shows that the AL-Ensemble ML model provides the most accurate estimations of interstory drift (ID) and residual interstory drift (RID) for steel structures using a dataset of 2-, to 9-story...
-
Raw data of AuAg nanoalloy plasmon resonances used for machine learning method
Dane BadawczeRaw data used for machine learning process. UV-vis measurements of AuAg alloyed nanostructures created from thin films. Plasmonic band position dependence on fabrication parameters. Small presentation reviewing achieved structures and their properties.
-
Speech Analytics Based on Machine Learning
PublikacjaIn this chapter, the process of speech data preparation for machine learning is discussed in detail. Examples of speech analytics methods applied to phonemes and allophones are shown. Further, an approach to automatic phoneme recognition involving optimized parametrization and a classifier belonging to machine learning algorithms is discussed. Feature vectors are built on the basis of descriptors coming from the music information...
-
Personal bankruptcy prediction using machine learning techniques
PublikacjaIt has become crucial to have an early prediction model that provides accurate assurance for users about the financial situation of consumers. Recent studies have focused on predicting corporate bankruptcies and credit defaults, not personal bankruptcies. Due to this situation, the present study fills the literature gap by comparing different machine learning algorithms to predict personal bankruptcy. The main objective of the...
-
Road traffic can be predicted by machine learning equally effectively as by complex microscopic model
PublikacjaSince high-quality real data acquired from selected road sections are not always available, a traffic control solution can use data from software traffic simulators working offline. The results show that in contrast to microscopic traffic simulation, the algorithms employing neural networks can work in real-time, so they can be used, among others, to determine the speed displayed on variable message road signs. This paper describes...
-
How Machine Learning Contributes to Solve Acoustical Problems
PublikacjaMachine learning is the process of learning functional relationships between measured signals (called percepts in the artificial intelligence literature) and some output of interest. In some cases, we wish to learn very specific relationships from signals such as identifying the language of a speaker (e.g. Zissman, 1996) which has direct applications such as in call center routing or performing a music information retrieval task...
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublikacjaIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
Machine Learning Techniques in Concrete Mix Design
PublikacjaConcrete mix design is a complex and multistage process in which we try to find the best composition of ingredients to create good performing concrete. In contemporary literature, as well as in state-of-the-art corporate practice, there are some methods of concrete mix design, from which the most popular are methods derived from The Three Equation Method. One of the most important features of concrete is compressive strength, which...
-
Introduction to the special issue on machine learning in acoustics
PublikacjaWhen we started our Call for Papers for a Special Issue on “Machine Learning in Acoustics” in the Journal of the Acoustical Society of America, our ambition was to invite papers in which machine learning was applied to all acoustics areas. They were listed, but not limited to, as follows: • Music and synthesis analysis • Music sentiment analysis • Music perception • Intelligent music recognition • Musical source separation • Singing...
-
Assessing the attractiveness of human face based on machine learning
PublikacjaThe attractiveness of the face plays an important role in everyday life, especially in the modern world where social media and the Internet surround us. In this study, an attempt to assess the attractiveness of a face by machine learning is shown. Attractiveness is determined by three deep models whose sum of predictions is the final score. Two annotated datasets available in the literature are employed for training and testing...
-
A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine
PublikacjaRNA protein interactions (RPI) play a pivotal role in the regulation of various biological processes. Experimental validation of RPI has been time-consuming, paving the way for computational prediction methods. The major limiting factor of these methods has been the accuracy and confidence of the predictions, and our in-house experiments show that they fail to accurately predict RPI involving short RNA sequences such as TERRA RNA....
-
Machine Learning in Multi-Agent Systems using Associative Arrays
PublikacjaIn this paper, a new machine learning algorithm for multi-agent systems is introduced. The algorithm is based on associative arrays, thus it becomes less complex and more efficient substitute of artificial neural networks and Bayesian networks, which is confirmed by performance measurements. Implementation of machine learning algorithm in multi-agent system for aided design of selected control systems allowed to improve the performance...
-
Machine Learning and Electronic Noses for Medical Diagnostics
PublikacjaThe need for noninvasive, easy-to-use, and inexpensive methods for point-of-care diagnostics of a variety of ailments motivates researchers to develop methods for analyzing complex biological samples, in particular human breath, that could aid in screening and early diagnosis. There are hopes that electronic noses, that is, devices based on arrays of semiselective or nonselective chemical sensors, can fill this niche. Electronic...
-
MACHINE LEARNING APPLICATIONS IN RECOGNIZING HUMAN EMOTIONS BASED ON THE EEG
PublikacjaThis study examined the machine learning-based approach allowing the recognition of human emotional states with the use of EEG signals. After a short introduction to the fundamentals of electroencephalography and neural oscillations, the two-dimensional valence-arousal Russell’s model of emotion was described. Next, we present the assumptions of the performed EEG experiment. Detail aspects of the data sanitization including preprocessing,...
-
Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
PublikacjaNitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, model predictions...
-
MACHINE LEARNING
Czasopisma -
Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality
PublikacjaHigh-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...
-
Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various Machine learning techniques
PublikacjaMachine Learning (ML) method is widely used in engineering applications such as fracture mechanics. In this study, twenty different ML algorithms were employed and compared for the prediction of the fracture toughness and fracture load in modes I, II, and mixed-mode (I-II) of various materials, including fibre-reinforced concrete, cement mortar, sandstone, white travertine, marble, and granite. A set of 401 specimens of “Brazilian...
-
Designing acoustic scattering elements using machine learning methods
PublikacjaIn the process of the design and correction of room acoustic properties, it is often necessary to select the appropriate type of acoustic treatment devices and make decisions regarding their size, geometry, and location of the devices inside the room under the treatment process. The goal of this doctoral dissertation is to develop and validate a mathematical model that allows predicting the effects of the application of the scattering...
-
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publikacja3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...
-
Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy
PublikacjaBiochar is emerging as a potential solution for biomass conversion to meet the ever increasing demand for sustainable energy. Efficient management systems are needed in order to exploit fully the potential of biochar. Modern machine learning (ML) techniques, and in particular ensemble approaches and explainable AI methods, are valuable for forecasting the properties and efficiency of biochar properly. Machine-learning-based forecasts,...
-
Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
PublikacjaOne of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was...
-
Global Miniaturization of Broadband Antennas by Prescreening and Machine Learning
PublikacjaThe development of contemporary electronic components, particularly antennas, places significant emphasis on miniaturization. This trend is driven by the emergence of technologies such as mobile communications, the internet of things, radio-frequency identification, and implantable devices. The need for small size is accompanied by heightened demands on electrical and field properties, posing a considerable challenge for antenna...
-
A Machine Learning Approach for Estimating Overtime Allocation in Software Development Projects
PublikacjaOvertime planning in software projects has traditionally been approached with search-based multi-objective optimization algorithms. However, the explicit solutions produced by these algorithms often lack applicability and acceptance in the software industry due to their disregard for project managers' intuitive knowledge. This study presents a machine learning model that learns the preferred overtime allocation patterns from solutions...
-
An Adversarial Machine Learning Approach on Securing Large Language Model with Vigil, an Open-Source Initiative
PublikacjaSeveral security concerns and efforts to breach system security and prompt safety concerns have been brought to light as a result of the expanding use of LLMs. These vulnerabilities are evident and LLM models have been showing many signs of hallucination, repetitive content generation, and biases, which makes them vulnerable to malicious prompts that raise substantial concerns in regard to the dependability and efficiency of such...
-
Process of Medical Dataset Construction for Machine Learning-Multifield Study and Guidelines
PublikacjaThe acquisition of high-quality data and annotations is essential for the training of efficient machine learning algorithms, while being an expensive and time-consuming process. Although the process of data processing and training and testing of machine learning models is well studied and considered in the literature, the actual procedures of obtaining data and their annotations in collaboration with physicians are in most cases...
-
Advancing Solar Energy: Machine Learning Approaches for Predicting Photovoltaic Power Output
PublikacjaThis research is primarily concentrated on predicting the output of photovoitaic power, an essential field in the study of renewable energy. The paper comprehensively reviews various forecasting methodologies, transitioning from conventional physical and statistical methods to advanced machine learning (ML) techniques. A significant shift has been observed from traditional point forecasting to machine learning-based forecasting...
-
Detecting Honey Adulteration: Advanced Approach Using UF-GC Coupled with Machine Learning
PublikacjaThis article introduces a novel approach to detecting honey adulteration by combining ultrafast gas chromatography (UF-GC) with advanced machine learning techniques. Machine learning models, particularly support vector regression (SVR) and least absolute shrinkage and selection operator (LASSO), were applied to predict adulteration in orange blossom (OB) and sunflower (SF) honeys. The SVR model achieved R2 values above 0.90 for...
-
Robust and Efficient Machine Learning Algorithms for Visual Recognition
PublikacjaIn visual recognition, the task is to identify and localize all objects of interest in the input image. With the ubiquitous presence of visual data in modern days, the role of object recognition algorithms is becoming more significant than ever and ranges from autonomous driving to computer-aided diagnosis in medicine. Current models for visual recognition are dominated by models based on Convolutional Neural Networks (CNNs), which...
-
Ireneusz Czarnowski Prof.
OsobyIRENEUSZ CZARNOWSKI is a graduate of the Faculty of Electrical Engineering at Gdynia Maritime University. He gained a doctoral degree in the field of computer science at Poznan University of Technology and a postdoctoral degree in the field of computer science at Wroclaw University of Science and Technology. Since 1998 is associated with Gdynia Maritime University, currently is a professor of computer science in the Department...
-
Assessment of Failure Occurrence Rate for Concrete Machine Foundations Used in Gas and Oil Industry by Machine Learning
PublikacjaConcrete machine foundations are structures that transfer loads from machines in operation to the ground. The design of such foundations requires a careful analysis of the static and dynamic effects caused by machine exploitation. There are also other substantial differences between ordinary concrete foundations and machine foundations, of which the main one is that machine foundations are separated from the building structure....
-
Multimedia industrial and medical applications supported by machine learning
PublikacjaThis article outlines a keynote paper presented at the Intelligent DecisionTechnologies conference providing a part of the KES Multi-theme Conference “Smart Digital Futures” organized in Rome on June 14–16, 2023. It briefly discusses projects related to traffic control using developed intelligent traffic signs and diagnosing the health of wind turbine mechanisms and multimodal biometric authentication for banking branches to provide...
-
Machine learning applied to acoustic-based road traffic monitoring
PublikacjaThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
Machine learning applied to acoustic-based road traffic monitoring
PublikacjaThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
PublikacjaThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...
-
Analyzing the relationship between sound, color, and emotion based on subjective and machine-learning approaches
PublikacjaThe aim of the research is to analyze the relationship between sound, color, and emotion. For this purpose, a survey application was prepared, enabling the assignment of a color to a given speaker’s/singer’s voice recordings. Subjective tests were then conducted, enabling the respondents to assign colors to voice/singing samples. In addition, a database of voice/singing recordings of people speaking in a natural way and with expressed...
-
Quantitative Risk Assessment in Construction Disputes Based on Machine Learning Tools
PublikacjaA high monetary value of the construction projects is one of the reasons of frequent disputes between a general contractor (GC) and a client. A construction site is a unique, one-time, and single-product factory with many parties involved and dependent on each other. The organizational dependencies and their complexity make any fault or mistake propagate and influence the final result (delays, cost overruns). The constant will...
-
Noise profiling for speech enhancement employing machine learning models
PublikacjaThis paper aims to propose a noise profiling method that can be performed in near real-time based on machine learning (ML). To address challenges related to noise profiling effectively, we start with a critical review of the literature background. Then, we outline the experiment performed consisting of two parts. The first part concerns the noise recognition model built upon several baseline classifiers and noise signal features...
-
Predicting emotion from color present in images and video excerpts by machine learning
PublikacjaThis work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...
-
Optimization of Microwave Components Using Machine Learning and Rapid Sensitivity Analysis
PublikacjaRecent years have witnessed a tremendous popularity growth of optimization methods in high-frequency electronics, including microwave design. With the increasing complexity of passive microwave components, meticulous tuning of their geometry parameters has become imperative to fulfill demands imposed by the diverse application areas. More and more often, achieving the best possible performance requires global optimization. Unfortunately,...
-
Concrete mix design using machine learning
PublikacjaDesigning a concrete mix is a process of synthesizing many components, it is not a simple process and requires extensive technical knowledge. The design process itself focuses on obtaining the required strength of concrete. Very often designing a concrete mix takes into account the need to maintain the proper water-demand and frost-resistance features. The parameters that influence the concrete class most significantly are the...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublikacjaCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
Platelet RNA Sequencing Data Through the Lens of Machine Learning
PublikacjaLiquid biopsies offer minimally invasive diagnosis and monitoring of cancer disease. This biosource is often analyzed using sequencing, which generates highly complex data that can be used using machine learning tools. Nevertheless, validating the clinical applications of such methods is challenging. It requires: (a) using data from many patients; (b) verifying potential bias concerning sample collection; and (c) adding interpretability...
-
A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine
Publikacja