Filtry
wszystkich: 6592
-
Katalog
- Publikacje 4475 wyników po odfiltrowaniu
- Czasopisma 278 wyników po odfiltrowaniu
- Konferencje 45 wyników po odfiltrowaniu
- Osoby 151 wyników po odfiltrowaniu
- Wynalazki 2 wyników po odfiltrowaniu
- Projekty 11 wyników po odfiltrowaniu
- Aparatura Badawcza 1 wyników po odfiltrowaniu
- Kursy Online 128 wyników po odfiltrowaniu
- Wydarzenia 18 wyników po odfiltrowaniu
- Dane Badawcze 1483 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: multi-task learning, instrument segmentation, video deblurring, dental microscope, spatio-temporal features
-
Leveraging spatio-temporal features for joint deblurring and segmentation of instruments in dental video microscopy
PublikacjaIn dentistry, microscopes have become indispensable optical devices for high-quality treatment and micro-invasive surgery, especially in the field of endodontics. Recent machine vision advances enable more advanced, real-time applications including but not limited to dental video deblurring and workflow analysis through relevant metadata obtained by instrument motion trajectories. To this end, the proposed work addresses dental...
-
Multi-task Video Enhancement for Dental Interventions
PublikacjaA microcamera firmly attached to a dental handpiece allows dentists to continuously monitor the progress of conservative dental procedures. Video enhancement in video-assisted dental interventions alleviates low-light, noise, blur, and camera handshakes that collectively degrade visual comfort. To this end, we introduce a novel deep network for multi-task video enhancement that enables macro-visualization of dental scenes. In particular,...
-
Vident-real: an intra-oral video dataset for multi-task learning
Dane BadawczeWe introduce Vident-real, a large dataset of 100 video sequences of intra-oral scenes from real conservative dental treatments performed at the Medical University of Gdańsk, Poland. The dataset can be used for multi-task learning methods including:
-
Vident-lab: a dataset for multi-task video processing of phantom dental scenes
Dane BadawczeWe introduce a new, asymmetrically annotated dataset of natural teeth in phantom scenes for multi-task video processing: restoration, teeth segmentation, and inter-frame homography estimation. Pairs of frames were acquired with a beam splitter. The dataset constitutes a low-quality frame, its high-quality counterpart, a teeth segmentation mask, and...
-
Deep Video Multi-task Learning Towards Generalized Visual Scene Enhancement and Understanding
PublikacjaThe goal of this thesis was to develop efficient video multi-task convolutional architectures for a range of diverse vision tasks, on RGB scenes, leveraging i) task relationships and ii) motion information to improve multi-task performance. The approach we take starts from the integration of diverse tasks within video multi-task learning networks. We present the first two datasets of their kind in the existing literature, featuring...
-
TASK Quarterly
Czasopisma -
Concurrent Video Denoising and Deblurring for Dynamic Scenes
PublikacjaDynamic scene video deblurring is a challenging task due to the spatially variant blur inflicted by independently moving objects and camera shakes. Recent deep learning works bypass the ill-posedness of explicitly deriving the blur kernel by learning pixel-to-pixel mappings, which is commonly enhanced by larger region awareness. This is a difficult yet simplified scenario because noise is neglected when it is omnipresent in a wide...
-
A Spatio-temporal Approach to Intersectoral Labour and Wage Mobility
PublikacjaThe article presents the spatio-temporal approach for intersectoral labor and wage mobility. Analyses of interindustry mobility were performed with the use of general entropy mobility indices (GEMM). Spatio-temporal approach was obtained thanks to the separate measurement of spatial autocorrelation and regression for each set of sectoral wage and employment structure and was conducted in each year of the research period separately....
-
A spatio-temporal approach to intersectoral labour and wage mobility
PublikacjaThe article presents the spatio-temporal approach for intersectoral labor and wage mobility. Analyses of interindustry mobility were performed with the use of general entropy mobility indices (GEMM). Spatio- temporal approach was obtained thanks to the separate measurement of spatial autocorrelation and regression for each set of sectoral wage and employment structure and was conducted in each year of the research period separately....
-
Endoscopic Video Classification with the Consideration of Temporal Patterns
PublikacjaThe article describes a novel approach to automatic recognition and classification of diseases in endoscopic videos. Current directions of research in this field are discussed. Most presented methods focus on processing single frames and do not take into consideration the temporal relationship between continuous classifications. Existing approaches that consider the temporal structure of an incoming frame sequence are focused on...
-
Accelerating Video Frames Classification With Metric Based Scene Segmentation
PublikacjaThis paper addresses the problem of the efficient classification of images in a video stream in cases, where all of the video has to be labeled. Realizing the similarity of consecutive frames, we introduce a set of simple metrics to measure that similarity. To use these observations for decreasing the number of necessary classifications, we propose a scene segmentation algorithm. Performed experiments have evaluated the acquired...
-
Spatial and Spatio-Temporal Epidemiology
Czasopisma -
The adaptive spatio-temporal clustering method in classifying direct labor costs for the manufacturing industry
PublikacjaEmployee productivity is critical to the profitability of not only the manufacturing industry. By capturing employee locations using recent advanced tracking devices, one can analyze and evaluate the time spent during a workday of each individual. However, over time, the quantity of the collected data becomes a burden, and decreases the capabilities of efficient classification of direct labor costs. However, the results obtained...
-
Spatio-temporal filtering for determination of common mode error in regional GNSS networks
PublikacjaThe spatial correlation between different stations for individual components in the regional GNSS networks seems to be significant. The mismodelling in satellite orbits, the Earth orientation parameters (EOP), largescale atmospheric effects or satellite antenna phase centre corrections can all cause the regionally correlated errors. This kind of GPS time series errors are referred to as common mode errors (CMEs). They are usually...
-
Karol Flisikowski dr inż.
OsobyKarol Flisikowski jest profesorem uczelni w Katedrze Statystyki i Ekonometrii, Wydziału Zarządzania i Ekonomii Politechniki Gdańskiej. Jest odpowiedzialny jest za prowadzenie zajęć ze statystyki opisowej i matematycznej (w języku polskim i angielskim), a także badań naukowych w zakresie statystyki społecznej. Był uczestnikiem wielu konferencji o zasięgu krajowym, jak i międzynarodowym, gdzie prezentował wyniki prowadzonych przez...
-
A Novel Spatio–Temporal Deep Learning Vehicle Turns Detection Scheme Using GPS-Only Data
PublikacjaWhether the computer is driving your car or you are, advanced driver assistance systems (ADAS) come into play on all levels, from weather monitoring to safety. These modern-day ADASs use various assisting tools for drivers to keep the journey safe; these sophisticated tools provide early signals of numerous events, such as road conditions, emerging traffic scenarios, and weather warnings. Many urban applications, such as car-sharing...
-
Breast MRI segmentation by deep learning: key gaps and challenges
PublikacjaBreast MRI segmentation plays a vital role in early diagnosis and treatment planning of breast anomalies. Convolutional neural networks with deep learning have indicated promise in automating this process, but significant gaps and challenges remain to address. This PubMed-based review provides a comprehensive literature overview of the latest deep learning models used for breast segmentation. The article categorizes the literature...
-
Comparison of image pre-processing methods in liver segmentation task
PublikacjaAutomatic liver segmentation of Computed Tomography (CT) images is becoming increasingly important. Although there are many publications in this field there is little explanation why certain pre-processing methods were utilised. This paper presents a comparison of the commonly used approach of Hounsfield Units (HU) windowing, histogram equalisation, and a combination of these methods to try to ascertain what are the differences...
-
Deep learning based thermal image segmentation for laboratory animals tracking
PublikacjaAutomated systems for behaviour classification of laboratory animals are an attractive alternative to manual scoring. However, the proper animals separation and tracking, especially when they are in close contact, is the bottleneck of the behaviour analysis systems. In this paper, we propose a method for the segmentation of thermal images of laboratory rats that are in close contact during social behaviour tests. For this, we are...
-
Multi-Channel Virtual Instrument for Measuring Temperature—A Case Study
PublikacjaThe article presents the hardware and software configuration of the developed multi-channel temperature measurement system as well as calibration procedures and measurement results verifying the properties of measurement channels. The system has been developed and dedicated primarily for measuring the temperature distribution in a laboratory model simulating underground power lines. With the adopted configuration of the analog...
-
Expedited Machine-Learning-Based Global Design Optimization of Antenna Systems Using Response Features and Multi-Fidelity EM Analysis
PublikacjaThe design of antenna systems poses a significant challenge due to stringent per-formance requirements dictated by contemporary applications and the high com-putational costs associated with models, particularly full-wave electromagnetic (EM) analysis. Presently, EM simulation plays a crucial role in all design phases, encompassing topology development, parametric studies, and the final adjustment of antenna dimensions. The latter...
-
A Review on Machine Learning Deployment Patterns and Key Features in the Prediction of Preeclampsia
PublikacjaPrevious reviews have investigated machine learning (ML) models used to predict the risk of developing preeclampsia. However, they have not addressed the intended deployment of these models throughout pregnancy, nor have they detailed feature performance. This study aims to provide an overview of existing ML models and their intended deployment patterns and performance, along with identified features of high importance. This review...
-
Instrument detection and pose estimation with rigid part mixtures model in video-assisted surgeries
PublikacjaLocalizing instrument parts in video-assisted surgeries is an attractive and open computer vision problem. A working algorithm would immediately find applications in computer-aided interventions in the operating theater. Knowing the location of tool parts could help virtually augment visual faculty of surgeons, assess skills of novice surgeons, and increase autonomy of surgical robots. A surgical tool varies in appearance due to...
-
Musical Instrument Identification Using Deep Learning Approach
PublikacjaThe work aims to propose a novel approach for automatically identifying all instruments present in an audio excerpt using sets of individual convolutional neural networks (CNNs) per tested instrument. The paper starts with a review of tasks related to musical instrument identification. It focuses on tasks performed, input type, algorithms employed, and metrics used. The paper starts with the background presentation, i.e., metadata...
-
Spatio-Temporal Validation of GNSS-Derived Global Ionosphere Maps Using 16 Years of Jason Satellites Observations
PublikacjaExisting ionospheric models perform very well in mapping the calm state of the ionosphere. However, the problem is accurately determining the total electron content (TEC) for disturbed days. Knowledge of the exact electron density is essential for single−frequency receivers, which cannot eliminate the ionospheric delay. This study aims to investigate temporal and spatial variability in the distribution of TEC based on differences...
-
Task-recency bias strikes back: Adapting covariances in Exemplar-Free Class Incremental Learning
PublikacjaExemplar-Free Class Incremental Learning (EFCIL) tackles the problem of training a model on a sequence of tasks without access to past data. Existing state-of-the-art methods represent classes as Gaussian distributions in the feature extractor's latent space, enabling Bayes classification or training the classifier by replaying pseudo features. However, we identify two critical issues that compromise their efficacy when the feature...
-
Assessment of the Accuracy of a Virtual Multi-Channel Temperature Measuring Instrument
PublikacjaThe multi-channel temperature measurement system developed works with NTC thermistors. The article presents the results of theoretical and empirical evaluation of accuracy obtained in measurement channels. The basis for the theoretical assessment is the mathematical model for each of the measurement channels and the characteristics of the system elements included in the circuits of the measurement channel. Two different methods were...
-
Spatio-Temporal Variation in Predation on Artificial Ground Nests: A 12-Year Experiment
Publikacja -
Jerzy Proficz dr hab. inż.
OsobyJerzy Proficz – dyrektor Centrum Informatycznego Trójmiejskiej Akademickiej Sieci Komputerowej (CI TASK) na Politechnice Gdańskiej. Uzyskał stopień naukowy doktora habilitowanego (2022) w dyscyplinie: Informatyka techniczna i telekomunikacja. Autor i współautor ponad 50 artykułów w czasopismach i na konferencjach naukowych związanych głównie z równoległym przetwarzaniem danych na komputerach dużej mocy (HPC, chmura obliczeniowa). Udział...
-
Accelerated multi-objective design optimization of antennas by surrogate modeling and domain segmentation
PublikacjaMulti-objective optimization yields indispensable information about the best possible design trade-offs of an antenna structure, yet it is challenging if full-wave electromagnetic (EM) analysis is utilized for performance evaluation. The latter is a necessity for majority of contemporary antennas as it is the only way of achieving acceptable modeling accuracy. In this paper, a procedure for accelerated multi-objective design of...
-
Feature Reduction Using Similarity Measure in Object Detector Learning with Haar-like Features
PublikacjaThis paper presents two methods of training complexity reduction by additional selection of features to check in object detector training task by AdaBoost training algorithm. In the first method, the features with weak performance at first weak classifier building process are reduced based on a list of features sorted by minimum weighted error. In the second method the feature similarity measures are used to throw away that features...
-
Task Assignments in Logistics by Adaptive Multi-Criterion Evolutionary Algorithm with Elitist Selection
PublikacjaAn evolutionary algorithm with elitist selection has been developed for finding Pareto-optimal task assignments in logistics. A multi-criterion optimization problem has been formulated for finding a set of Pareto- optimal solutions. Three criteria have been applied for evaluation of task assignment: the workload of a bottleneck machine, the cost of machines, and the numerical performance of system. The machine constraints have...
-
Multi-Stage Video Analysis Framework
PublikacjaThe chapter is organized as follows. Section 2 presents the general structure of the proposed framework and a method of data exchange between system elements. Section 3 is describing the low-level analysis modules for detection and tracking of moving objects. In Section 4 we present the object classification module. Sections 5 and 6 describe specialized modules for detection and recognition of faces and license plates, respectively....
-
Efkleidis Katsaros
OsobyEfklidis Katsaros received the B.Sc. degree in mathematics from the Aristotle University of Thessaloniki, Greece, in 2016, and the M.Sc. degree (cum laude) in data science: statistical science from Leiden University, The Netherlands, in 2019. He is currently pursuing the Ph.D. degree in deep video multi-task learning with the Department of Biomedical Engineering, Gdańsk University of Technology, Poland. Since 2020, he has been...
-
Intelligent video and audio applications for learning enhancement
PublikacjaThe role of computers in school education is briefly discussed. Multimodal interfaces development history is shortly reviewed. Examples of applications of multimodal interfaces for learners with special educational needs are presented, including interactive electronic whiteboard based on video image analysis, application for controlling computers with facial expression and speech stretching audio interface representing audio modality....
-
Pawlak's flow graph extensions for video surveillance systems
PublikacjaThe idea of the Pawlak's flow graphs is applicable to many problems in various fields related to decision algorithms or data mining. The flow graphs can be used also in the video surveillance systems. Especially in distributed multi-camera systems which are problematic to be handled by human operators because of their limited perception. In such systems automated video analysis needs to be implemented. Important part of this analysis...
-
Multi-Camera Vehicle Tracking Using Local Image Features and Neural Networks
PublikacjaA method for tracking moving objects crossing fields of view of multiple cameras is presented. The algorithm utilizes Artificial Neural Networks (ANNs). Each ANN is trained to recognize images of one moving object acquired by a single camera. Local image features calculated in the vicinity of automatically detected interest points are used as object image parameters. Next, ANNs are employed to identify the same objects captured...
-
Machine Learning in Multi-Agent Systems using Associative Arrays
PublikacjaIn this paper, a new machine learning algorithm for multi-agent systems is introduced. The algorithm is based on associative arrays, thus it becomes less complex and more efficient substitute of artificial neural networks and Bayesian networks, which is confirmed by performance measurements. Implementation of machine learning algorithm in multi-agent system for aided design of selected control systems allowed to improve the performance...
-
Deep Learning-Based Cellular Nuclei Segmentation Using Transformer Model
PublikacjaAccurate segmentation of cellular nuclei is imperative for various biological and medical applications, such as cancer diagnosis and drug discovery. Histopathology, a discipline employing microscopic examination of bodily tissues, serves as a cornerstone for cancer diagnosis. Nonetheless, the conventional histopathological diagnosis process is frequently marred by time constraints and potential inaccuracies. Consequently, there...
-
Modelling Object Behaviour in a Video Surveillnace System Using Pawlak's Flowgraph
PublikacjaIn this paper, methodology of acquisition and processing of video streams for the purpose of modelling object behaviour is presented. Multilevel contextual video processing was also mentioned. The Pawlak’s flowgraph is used as a container for the knowledge related to the behaviour of objects in the area supervised by a video surveillance system. Spatio-temporal dependencies in transitions between cameras can be easily changed in...
-
Learning sperm cells part segmentation with class-specific data augmentation
PublikacjaInfertility affects around 15% of couples worldwide. Male fertility problems include poor sperm quality and low sperm count. The advanced fertility treatment methods like ICSI are nowadays supported by vision systems to assist embryologists in selecting good quality sperm. Computer-Assisted Semen Analysis (CASA) provides quantitative and qualitative sperm analysis concerning concentration, motility, morphology, vitality, and fragmentation....
-
Sperm segmentation and abnormalities detection during the ICSI procedure using machine learning algorithms
Publikacja(1) About 15-20% of couples struggle with the problem of infertility. 30 to 40% of these cases are caused by abnormalities in the structure and motility of sperm. Sometimes the only possibility for such people is to use the procedure of artificial insemination. CASA systems are used to increase the efficiency of this procedure by selecting the appropriate sperm cell. (2) This paper presents an approach to the sperm classification...
-
Multi-objective design optimization of antennas for reflection, size, and gain variability using kriging surrogates and generalized domain segmentation
PublikacjaCost-efficient multi-objective design optimization of antennas is presented. The framework exploits auxiliary data-driven surrogates, a multi-objective evolutionary algorithm for initial Pareto front identification, response correction techniques for design refinement, as well as generalized domain segmentation. The purpose of this last mechanism is to reduce the volume of the design space region that needs to be sampled in order...
-
SegSperm - a dataset of sperm images for blurry and small object segmentation
Dane BadawczeMany deep learning applications require figure-ground segmentation. The performance of segmentation models varies across modalities and acquisition settings.
-
Predicting emotion from color present in images and video excerpts by machine learning
PublikacjaThis work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...
-
The Digital Tissue and Cell Atlas and the Virtual Microscope
PublikacjaWith the cooperation of the CI TASK (Center of lnformatics Tri-Citry Academic Supercomputer and network) and the Gdańsk University of Technology, the Medical University of Gdańsk undertook the creation of the Digital Tissue and Cell Atlas and the Virtual Microscope for the needs of the Bridge of Data project. In the beginning, an extensive collection of histological and cytological slides was carefully selected and prepared by...
-
Fast multi-objective design optimization of microwave and antenna structures using data-driven surrogates and domain segmentation
PublikacjaPurpose Strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup are investigated. Design/methodology/approach Formulation of the multi-objective design problem oriented towards execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploit variable fidelity modeling, physics- and...
-
Multi-objective design of miniaturized impedance transformers by domain segmentation
PublikacjaFast multi-objective design optimization of compact microstrip impedance transformers is discussed. Our approach exploits approximation models constructed using sampled coarse- mesh EM simulation data in a partitioned design space and response correction techniques for design refinement. Demonstra
-
Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance
PublikacjaIdentification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable...
-
Adaptive Method for Modeling of Temporal Dependencies between Fields of Vision in Multi-Camera Surveillance Systems
PublikacjaA method of modeling the time of object transition between given pairs of cameras based on the Gaussian Mixture Model (GMM) is proposed in this article. Temporal dependencies modeling is a part of object re-identification based on the multi-camera experimental framework. The previously utilized Expectation-Maximization (EM) approach, requiring setting the number of mixtures arbitrarily as an input parameter, was extended with the...