Filtry
wszystkich: 2636
-
Katalog
- Publikacje 2124 wyników po odfiltrowaniu
- Czasopisma 132 wyników po odfiltrowaniu
- Konferencje 22 wyników po odfiltrowaniu
- Wydawnictwa 1 wyników po odfiltrowaniu
- Osoby 171 wyników po odfiltrowaniu
- Projekty 7 wyników po odfiltrowaniu
- Kursy Online 85 wyników po odfiltrowaniu
- Wydarzenia 7 wyników po odfiltrowaniu
- Oferty 1 wyników po odfiltrowaniu
- Dane Badawcze 86 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: MACHINE SYNCHRONE
-
Modelling of First- and Second-order Chemical Reactions on ARUZ – Massively-parallel FPGA-based Machine
Publikacja -
Exploring the Solubility Limits of Edaravone in Neat Solvents and Binary Mixtures: Experimental and Machine Learning Study
PublikacjaThis study explores the edaravone solubility space encompassing both neat and binary dissolution media. Efforts were made to reveal the inherent concentration limits of common pure and mixed solvents. For this purpose, the published solubility data of the title drug were scrupulously inspected and cured, which made the dataset consistent and coherent. However, the lack of some important types of solvents in the collection called...
-
Solubility of dapsone in deep eutectic solvents: Experimental analysis, molecular insights and machine learning predictions
PublikacjaBackground. Dapsone (DAP) is an anti-inflammatory and antimicrobial active pharmaceutical ingredient used to treat, e.g., AIDS-related diseases. However, low solubility is a feature hampering its efficient use. Objectives. First, deep eutectic solvents...
-
Investigations of methods to measure longitudinal forces in continuous welded rail tracks using the tamping machine.
PublikacjaPraca przedstawia w sposób poglądowy próby znalezienia efektywnej metody określania sił podłużnych w szynach toru bezstykowego. Szczególną uwagę poświęcono metodzie wymuszonych przemieszczeń poprzecznych. Podstawowym stwierdzeniem z przeprowadzonych własnych badań była konieczność odejścia od podnoszenia odłączonego od podkładów odcinka szyny i skoncentrowanie się na przemieszczeniach poprzecznych; doprowadziło to koncepcji zastosowania...
-
Hybrid Processing: the Impact of Mechanical and Surface Thermal Treatment Integration onto the Machine Parts Quality
Publikacja -
A novel hybrid adaptive framework for support vector machine-based reliability analysis: A comparative study
PublikacjaThis study presents an innovative hybrid Adaptive Support Vector Machine - Monte Carlo Simulation (ASVM-MCS) framework for reliability analysis in complex engineering structures. These structures often involve highly nonlinear implicit functions, making traditional gradient-based first or second order reliability algorithms and Monte Carlo Simulation (MCS) time-consuming. The application of surrogate models has proven effective...
-
Machine-Learning Methods for Estimating Performance of Structural Concrete Members Reinforced with Fiber-Reinforced Polymers
PublikacjaIn recent years, fiber-reinforced polymers (FRP) in reinforced concrete (RC) members have gained significant attention due to their exceptional properties, including lightweight construction, high specific strength, and stiffness. These attributes have found application in structures, infrastructures, wind power equipment, and various advanced civil products. However, the production process and the extensive testing required for...
-
Optical method supported by machine learning for urinary tract infection detection and urosepsis risk assessment
PublikacjaThe study presents an optical method supported by machine learning for discriminating urinary tract infections from an infection capable of causing urosepsis. The method comprises spectra of spectroscopy measurement of artificial urine samples with bacteria from solid cultures of clinical E. coli strains. To provide a reliable classification of results assistance of 27 algorithms was tested. We proved that is possible to obtain...
-
Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance
PublikacjaIdentification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable...
-
Machine-Learning-Powered EM-Based Framework for Efficient and Reliable Design of Low Scattering Metasurfaces
PublikacjaPopularity of metasurfaces has been continuously growing due to their attractive properties including the ability to effectively manipulate electromagnetic (EM) waves. Metasurfaces comprise optimized geometries of unit cells arranged as a periodic lattice to obtain a desired EM response. One of their emerging application areas is the stealth technology, in particular, realization of radar cross section (RCS) reduction. Despite...
-
Speed estimation of a car at impact with a W-beam guardrail using numerical simulations and machine learning
PublikacjaThis paper aimed at developing a new method of estimating the impact speed of a passenger car at the moment of a crash into a W-beam road safety barrier. The determination of such a speed based on the accident outcomes is demanding, because often there is no access to full accident data. However, accurate determination of the impact speed is one of the key elements in the reconstruction of road accidents. A machine learning algorithm...
-
Analysis of surface roughness of chemically impregnated Scots pine processed using frame-sawing machine
PublikacjaThe objective of this work was to evaluate the effect of the impregnation process of pine wood (Pinus sylvestris L.) on roughness parameters of the surface processed on a frame sawing. The samples weredried and impregnated using a commercial procedure by a local company. The touch method withthe use of measuring stylus (pin) was employed to determine of surface roughness of the samplesconsidering parameters, namely, arithmetical...
-
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
PublikacjaThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...
-
Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
PublikacjaPredicting the Maximum Interstory Drift Ratio (M-IDR) of Steel Moment-Resisting Frames (SMRFs) is a useful tool for designers to approximately evaluate the vulnerability of SMRFs. This study aims to explore supervised Machine Learning (ML) algorithms to build a surrogate prediction model for SMRFs to reduce the need for complex modeling. For this purpose, twenty well-known ML algorithms implemented in Python software are trained...
-
Energy consumption optimization in wastewater treatment plants: Machine learning for monitoring incineration of sewage sludge
PublikacjaBiomass management in terms of energy consumption optimization has become a recent challenge for developed countries. Nevertheless, the multiplicity of materials and operating parameters controlling energy consumption in wastewater treatment plants necessitates the need for sophisticated well-organized disciplines in order to minimize energy consumption and dissipation. Sewage sludge (SS) disposal management is the key stage of...
-
The methodology of design of axial clearances compensation unit in hydraulic satellite displacement machine and their experimental verification
PublikacjaA new methodology of calculating the dimensions of the axial clearance compensation unit in the hydraulic satellite displacement machine is described in this paper. The methods of shaping the compensation unit were also proposed and described. These methods were used to calculate the geometrical dimensions of the compensation field in an innovative prototype of a satellite hydraulic motor. This motor is characterized by the fact...
-
Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality
PublikacjaHigh-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...
-
Assessment Of the Relevance of Best Practices in The Development of Medical R&D Projects Based on Machine Learning
PublikacjaMachine learning has emerged as a fundamental tool for numerous endeavors within health informatics, bioinformatics, and medicine. However, novices among biomedical researchers and IT developers frequently lack the requisite experience to effectively execute a machine learning project, thereby increasing the likelihood of adopting erroneous practices that may result in common pitfalls or overly optimistic predictions. The paper...
-
Integrating Experience-Based Knowledge Representation and Machine Learning for Efficient Virtual Engineering Object Performance
PublikacjaMachine learning and Artificial Intelligence have grown significant attention from industry and academia during the past decade. The key reason behind interest is such technologies capabilities to revolutionize human life since they seamlessly integrate classical networks, networked objects and people to create more efficient environments. In this paper, the Knowledge Representation technique of Set of Experience...
-
Decisional DNA (DDNA) Based Machine Monitoring and Total Productive Maintenance in Industry 4.0 Framework
PublikacjaThe entire manufacturing spectrum is transforming with the advent of Industry 4.0. The features of Set of Experience Knowledge Structure (SOEKS) and Decisional DNA (DDNA) were utilized for developing Virtual Engineering Objects (VEO), Virtual Engineering Process (VEP) and Virtual Engineering Factory (VEF), which in turn facilitate the creation of smart factories. In this study, DDNA based Machine Monitoring for Total Maintenance...
-
Machining process sequencing and machine assignment in generative feature-based CAPP for mill-turn parts
PublikacjaProcess selection and sequencing, as one of the most complex issues when evaluated from a mathematical point of view and crucial in CAPP, still attract research attention. For the current trend of intelligent manufacturing, machining features (MFs) are the information carriers for workpiece geometry and topology representation. They are basically derived from CAD models and are used by downstream engineering applications. A feature-based...
-
Machine Learning Applied to Aspirated and Non-Aspirated Allophone Classification—An Approach Based on Audio "Fingerprinting"
PublikacjaThe purpose of this study is to involve both Convolutional Neural Networks and a typical learning algorithm in the allophone classification process. A list of words including aspirated and non-aspirated allophones pronounced by native and non-native English speakers is recorded and then edited and analyzed. Allophones extracted from English speakers’ recordings are presented in the form of two-dimensional spectrogram images and...
-
Forecasting values of cutting power for the sawing process of impregnated pine wood on band sawing machine
PublikacjaW artykule przedstawiono prognozowane wartości mocy skrawania dla pilarki taśmowej (ST100R firmy STENNER), które są stosowane w polskich tartakach. Wartości mocy skrawania oszacowano dla drewna sosny zwyczajnej (Pinus sylvestris L.), które zostało poddane impregnacji. Dla porównania wyznaczono również wartości mocy skrawania dla drewna niezaimpregnowanego. Wartości te określono za pomocą innowacyjnej metody prognozowania sił skrawania,...
-
Numerical analysis of chip removing system operation in circular sawing machine using CFD software
PublikacjaPaper presents the analysis of the results of numerical simulations of the air flow process of wood chips removing system in the circular sawing machine. The attention is focused on the upper cover and bottom shelter of the chip removing system. Within the framework of the work a systematic numerical modeling of the air flow distribution in the cover and shelter during operation of the selected rotational speed of saw blade with...
-
GRA1 protein vaccine confers better immune response compared to codon-optimized GRA1 DNA vaccine
PublikacjaW publikacji oszacowano immunogenność i właściwości protekcyjne szczepionki anty-Toxoplasma gondii opartej na białku rekombinantowym GRA1 oraz dwóch rodzajach szczepionek DNA (plazmidu zawierającego gen kodujący białko GRA1 dzikiego typu oraz modyfikowanego genu kodującego białko GRA1). Uzyskane wyniki sugerują lepsze właściowści immunoprotekcyjne rekombinantowego białka antygenowego niż szczepionek DNA.
-
Current status of toxoplasmosis vaccine development
PublikacjaToksoplazmoza, choroba wywoływana przez wewnątrzkomórkowego pasożyta Toxoplasma gondii jest szeroko rozpowszechniona na całym świecie. Zarażenie tym pasożytem stanowi bardzo poważny problem medyczny i weterynaryjny, ponieważ jest przyczyną ciężkiej wrodzonej postaci choroby (tzw. toksoplazmozy wrodzonej) oraz poronień, które dotyczą zarówno ludzi jak i zwierząt domowych. Toksoplazmoza może mieć także ciężki przebieg u osób upośledzoną...
-
Therapeutic Potential of Multifunctional Tacrine Analogues
PublikacjaTacrine is a potent inhibitor of cholinesterases (acetylcholinesterase and butyrylcholinesterase) that shows limiting clinical application by liver toxicity. In spite of this, analogues of tacrine are considered as a model inhibitor of cholinesterases in the therapy of Alzheimer’s disease. The interest in these compounds is mainly related to a high variety of their structure and biological properties. In the present review, we...
-
Energy-Saving Inertial Drive for Dual-Frequency Excitation of Vibrating Machines
Publikacja -
Machined Surface Roughness Including Cutter Displacements in Milling of Hardened Teel
Publikacja -
Calculations of labyrinth seals with and without diagnostic extraction in fluid-flow machines
PublikacjaLabyrinth seals are essential components of steam turbine unit constructions. Two types of labyrinth seals can be named, the first of which is the seal without diagnostic steam extraction, and the second – with extraction. The distribution of flow parameters along the packing is affected remarkably by the average seal clearance. The presence of diagnostic extraction leads to the equation system which is determinable and can be...
-
Influence of Honing Parameters on the Quality of the Machined Parts and Innovations in Honing Processes
PublikacjaThe article presents a literature review dealing with the effect of the honing parameters on the quality of the machined parts, as well as with the recent innovations in honing processes. First, an overview about the honing and the plateau-honing processes is presented, considering the main parameters that can be varied during machining. Then, the influence of the honing parameters on surface finish, shape deviation and material...
-
Modelling electrical machines using bond graphs for mechatronics system applications.
PublikacjaW artykule przedstawiono modelowanie maszyn elektrycznych metodą grafów wiązań dla potrzeb mechatroniki. Omówiono ogólne założenia modelowania maszyn elektrycznych w ujęciu grafów wiązań, bazującego na modelach wzorcowego sprzężenia transformatorowego i elektromechanicznego. Wykorzystując modele tych sprzężeń przedstawiono w ujęciu grafów wiązań model maszyny indukcyjnej w układzie współrzędnych naturalnych stojana. Model opracowano...
-
Analyses of static displacements of a spindle apllied in typical circular sawing machines
PublikacjaW pracy przedstawiono analizę właściwości statycznych wrzeciona stosowanego w typowych pilarkach tarczowych. Zdefiniowano umowną oś obrotu wrzeciona pilarki tarczowej, która odpowiada geometrycznemu środkowi otworu piły tarczowej. W obliczeniach wyznaczono przemieszczenia umownej osi obrotu wrzeciona, wskaźnik sztywności wrzeciona oraz przemieszczenie poprzeczne piły.
-
Non-Linear Control of Electrical Machines Using Non-Linear Feedback
PublikacjaPrzedstawiono zasady nieliniowego sterowania oraz zastosowanie nielinowego sprzężenia zwrotnego do maszyn elektrycznych. Opisano nieliniowe sterowanie obcowzbudnym silnikiem prądu stałego. Zaprezentowano multiskalarne modele maszyn prądu przemiennego. Maszynę indukcyjną zamodelowano z wykorzystaniem strumienia wirnika oraz z wykorzystaniem strumienia stojana. MMultiskalarne modele maszyny indukcyjnej wykorzystano do nieliniowego...
-
Identification and non-integer order modelling of synchronous machines operating as generator
PublikacjaThis paper presents an original mathematical model of a synchronous generator using derivatives of fractional order. In contrast to classical models composed of a large number of R-L ladders, it comprises half-order impedances, which enable the accurate description of the electromagnetic induction phenomena in a wide frequency range, while minimizing the order and number of model parameters. The proposed model takes into account...
-
Scheduling with Complete Multipartite Incompatibility Graph on Parallel Machines: Complexity and Algorithms
PublikacjaIn this paper, the problem of scheduling on parallel machines with a presence of incompatibilities between jobs is considered. The incompatibility relation can be modeled as a complete multipartite graph in which each edge denotes a pair of jobs that cannot be scheduled on the same machine. The paper provides several results concerning schedules, optimal or approximate with respect to the two most popular criteria of optimality:...
-
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Czasopisma -
GIS for remote sensing, analysis and visualisation of marine pollution and other marine ecosystem components
PublikacjaW artykule przedstawiono koncepcję oraz prototyp morskiego systemu GIS do zdalnego monitorowania w czasie rzeczywistym zanieczyszczeń środowiska morskiego. System pozwala na gromadzenie i integrowanie danych z różnego rodzaju sensorów, takich jak echosondy jednowiązkowe, sonary boczne i echosondy wielowiązkowe.
-
Detection of Cystic Fibrosis Symptoms Based on X-Ray Images Using Machine Learning- Pilot Study
Publikacja -
Universal Predictors of Dental Students’ Attitudes towards COVID-19 Vaccination: Machine Learning-Based Approach
Publikacja -
Active Learning on Ensemble Machine-Learning Model to Retrofit Buildings Under Seismic Mainshock-Aftershock Sequence
PublikacjaThis research presents an efficient computational method for retrofitting of buildings by employing an active learning-based ensemble machine learning (AL-Ensemble ML) approach developed in OpenSees, Python and MATLAB. The results of the study shows that the AL-Ensemble ML model provides the most accurate estimations of interstory drift (ID) and residual interstory drift (RID) for steel structures using a dataset of 2-, to 9-story...
-
Cost-Efficient Measurement Platform and Machine-Learning-Based Sensor Calibration for Precise NO2 Pollution Monitoring
PublikacjaAir quality significantly impacts human health, the environment, and the economy. Precise real-time monitoring of air pollution is crucial for managing associated risks and developing appropriate short- and long-term measures. Nitrogen dioxide (NO2) stands as a common pollutant, with elevated levels posing risks to the human respiratory tract, exacerbating respiratory infections and asthma, and potentially leading to chronic lung...
-
Development of an emulation platform for synchronous machine power generation system using a nonlinear functional level model
PublikacjaThe article presents the Power Hardware in the Loop (PHIL) approach for an autonomous power system analysis based on the synchronous generator model incorporating magnetic saturation effects. The model was prepared in the MATLAB/Simulink environment and then compiled into the C language for the PHIL platform implementation. The 150 kVA bidirectional DC/AC commercial-grade converter was used to emulate the synchronous generator....
-
An algorithm for selecting a machine learning method for predicting nitrous oxide emissions in municipal wastewater treatment plants
PublikacjaThis study presents an advanced algorithm for selecting machine learning (ML) models for nitrous oxide (N2O) emission prediction in wastewater treatment plants (WWTPs) employing the activated sludge process. The examined ML models comprised multivariate adaptive regression spline (MARS), support vector machines (SVM), and extreme gradient boosting (XGboost). The study explores the concept that involves new criteria to select the...
-
Seismic response and performance prediction of steel buckling-restrained braced frames using machine-learning methods
PublikacjaNowadays, Buckling-Restrained Brace Frames (BRBFs) have been used as lateral force-resisting systems for low-, to mid-rise buildings. Residual Interstory Drift (RID) of BRBFs plays a key role in deciding to retrofit buildings after seismic excitation; however, existing formulas have limitations and cannot effectively help civil engineers, e.g., FEMA P-58, which is a conservative estimation method. Therefore, there is a need to...
-
Rapid Surrogate-Aided Multi-Criterial Optimization of Compact Microwave Passives Employing Machine Learning and ANNs
PublikacjaThis article introduces an innovative method for achieving low-cost and reliable multi-objective optimization (MO) of microwave passive circuits. The technique capitalizes on the attributes of surrogate models, specifically artificial neural networks (ANNs), and multi-resolution electromagnetic (EM) analysis. We integrate the search process into a machine learning (ML) framework, where each iteration produces multiple infill points...
-
Ecology In Tribology: Selected Problems of Eliminating Natural Oil-Based Lubricants from Machine Friction Couples
PublikacjaThe elimination of mineral oil-based lubricants from machines has multiple beneficial effects on the natural environment. Firstly – these lubricants are a direct threat to the environment in the event of leaks; secondly – their elimination reduces the demand for crude oil from which they are obtained. In addition, in many cases, e.g. when replacing traditional lubricants with water, friction losses in the bearings can also be reduced...
-
Application of fiber optic sensors using Machine Learning algorithms for temperature measurement of lithium-ion batteries
PublikacjaOptical fiber sensorsusing low-coherence interferometry require processing ofthe output spectrum or interferogramto quickly and accurately determine the instantaneous value of the measured quantity, such as temperature.Methods based on machine learning are a good candidate for this application. The application of four such methods in an optical fiber temperature sensoris demonstrated.Using aZnO-coated...
-
Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various Machine learning techniques
PublikacjaMachine Learning (ML) method is widely used in engineering applications such as fracture mechanics. In this study, twenty different ML algorithms were employed and compared for the prediction of the fracture toughness and fracture load in modes I, II, and mixed-mode (I-II) of various materials, including fibre-reinforced concrete, cement mortar, sandstone, white travertine, marble, and granite. A set of 401 specimens of “Brazilian...
-
Machine-Learning-Based Global Optimization of Microwave Passives with Variable-Fidelity EM Models and Response Features
PublikacjaMaximizing microwave passive component performance demands precise parameter tuning, particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a comprehensive approach due to their complex geometries and miniaturized structures. However, the computational burden of optimizing these components via full-wave electromagnetic (EM) simulations is substantial. EM analysis remains crucial for circuit...