Filters
total: 1796
filtered: 127
Search results for: POLYURETHANE, POLYLACTIDE, TISSUE ENGINEERING, SKIN SCAFFOLD
-
Microporous Polyurethane Thin Layer as a Promising Scaffold for Tissue Engineering
PublicationThe literature describes that the most efficient cell penetration takes place at 200–500 µm depth of the scaffold. Many different scaffold fabrication techniques were described to reach these guidelines. One such technique is solvent casting particulate leaching (SC/PL). The main advantage of this technique is its simplicity and cost efficiency, while its main disadvantage is the scaffold thickness, which is usually not less than...
-
Ciprofloxacin-modified degradable hybrid polyurethane-polylactide porous scaffolds developed for potential use as an antibacterial scaffold for regeneration of skin
PublicationThe aim of the performed study was to fabricate an antibacterial and degradable scaffold that may be used in the field of skin regeneration. To reach the degradation criterion for the biocompatible polyurethane (PUR), obtained by using amorphous α,ω-dihydroxy(ethylene-butylene adipate) macrodiol (PEBA), was used and processed with so-called “fast-degradable” polymer polylactide (PLA) (5 or 10 wt %). To meet the antibacterial requirement...
-
Ciprofloxacin – Modified Degradable Hybrid Polyurethane-Polylactide Porous Scaffolds Developed for Potential Use as an Antibacterial Scaffold for Regeneration of Skin
Publication -
Green Polymer Nanocomposites for Skin Tissue Engineering
PublicationFabrication of an appropriate skin scaffold needs to meet several standards related to the mechanical and biological properties. Fully natural/green scaffolds with acceptable biodegradability, biocompatibility, and physiological properties quite often suffer from poor mechanical properties. Therefore, for appropriate skin tissue engineering and to mimic the real functions, we need to use synthetic polymers and/or additives as complements...
-
The Influence of PEG on Morphology of Polyurethane Tissue Scaffold
PublicationIn this study, polyurethanes (PU) were synthesized from oligomeric dihydroxy(etylene-butylene adipate), poly(ethylene glycol) (PEG), hexamethylene diisocyanate (HDI), 1,4-butanediol (BDO) as chain extender and stannous octoate as catalyst. PEG due to its hydrophilic character influences physical and chemical properties of PU. For testing were used PU having the following weigh contents of PEG: 0%, 7%, and 14%. Porous scaffolds...
-
ASCORBIC ACID IN POLYURETHANE SYSTEMS FOR TISSUE ENGINEERING
PublicationThe introduction of the paper was devoted to the main items of tissue engineering (TE) and the way of porous structure obtaining as scaffolds. Furthermore, the significant role of the scaffold design in TE was described. It was shown, that properly designed polyurethanes (PURs) find application in TE due to the proper physicochemical, mechanical and biological properties. Then the use of L-ascorbic acid (L-AA) in PUR systems for...
-
The Influence of PEG on Morphology of Polyurethane Tissue Scaffold
Publication -
Fabrication of polyurethane and polyurethane based composite fibers by the electrospinning technique for soft tissue engineering of cardiovascular system
PublicationElectrospinning is the unique technique, which provides forming of polymeric scaffolds for soft tissue engineering, which include tissue scaffolds for soft tissues of cardiovascular system. Such artificial soft tissues of cardiovascular system may possess mechanical properties comparable to native vascular tissues. Electrospinning technique gives the opportu nity to form fibres with nm- to μm-scale in diameter. The arrangement...
-
Porosity and swelling properties of novel polyurethane–ascorbic acid scaffolds prepared by different procedures for potential use in bone tissue engineering
PublicationIn this work, a novel polyurethane (PU) system based on poly(ethylene-butylene) adipate diol, 1,6-hexamethylene diisocyanate, 1,4-butanediol, and ascorbic acid was used to prepare scaffolds with potential applications in bone tissue engineering. Two fabrication methods to obtain porous materials were chosen: phase separation (PS)/salt particle leaching (PL) and solvent casting (SC)/salt PL. The calculated porosity demonstrated...
-
Polyurethane based hybrid ciprofloxacin-releasing wound dressings designed for skin engineering purpose
PublicationPurpose Even in the 21st century, chronic wounds still pose a major challenge due to potentially inappropriate treatment options, so the latest wound dressings are hybrid systems that enable clinical management, such as a hybrid of hydrogels, antibiotics and polymers. These wound dressings are mainly used for chronic and complex wounds, which can easily be infected by bacteria. Materials and methods Six Composite Porous Matrices...
-
Gelatin-Modified Polyurethanes for Soft Tissue Scaffold
PublicationRecently, in the field of biomaterials, which are being designed for soft tissue scaffolding, is growing the interest of their modification with natural polymers. Synthetic polymers are often hard, not easy to process and they do not possess fine biodegradable profile. From the other hand natural polymers are biocompatible, but weak when used alone. The combination of natural and synthetic polymers gives the suitable properties...
-
Polyurethane porous scaffolds (PPS) for soft tissue regenerative medicine applications
PublicationTissue engineering requires suitable polymeric scaffolds, which act as a physical support for regenerated tissue. A promising candidate might be polyurethane (PUR) scaffold, due to the ease of the PUR properties design, which can be adjusted directly to the intended purpose. In this study, we report a successful fabrication of porous polyurethane scaffolds (PPS) using solvent casting/particulate leaching technique combined with...
-
Electrically Conductive Carbon‐based (Bio)‐nanomaterials for Cardiac Tissue Engineering
PublicationA proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials...
-
Biopolymer-based composites for tissue engineering applications: A basis for future opportunities
PublicationBiomimetic scaffolds supporting tissue regeneration are complex materials with multifunctional characteristics. The unique biocompatibility and biodegradability of biopolymers make them excellent candidates for tissue engineering and regenerative medicine. Biopolymers, which have a wide range of properties, can be obtained from different natural sources. Depending on the target tissue, biopolymers can be engineered to meet a series...
-
Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system
Publication -
Comparative review of piezoelectric biomaterials approach for bone tissue engineering
PublicationBone as a minerals’ reservoir and rigid tissue of the body generating red and white blood cells supports various organs. Although the self-regeneration property of bone, it cannot regenerate spontaneously in severe damages and still remains as a challenging issue. Tissue engineering offers several techniques for regenerating damaged bones, where various biomaterials are examined to fabricate scaffolds for bone repair. Piezoelectric...
-
Imunofan—RDKVYR Peptide—Stimulates Skin Cell Proliferation and Promotes Tissue Repair
PublicationRegeneration and wound healing are vital to tissue homeostasis and organism survival. One of the biggest challenges of today’s science and medicine is finding methods and factors to stimulate these processes in the human body. Effective solutions to promote regenerative responses will accelerate advances in tissue engineering, regenerative medicine, transplantology, and a number of other clinical specialties. In this study, we...
-
Biomedical engineering of polysaccharide-based tissue adhesives: Recent advances and future direction
PublicationTissue adhesives have been widely used for preventing wound leaks, sever bleeding, as well as for enhancing drug delivery and biosensing. However, only a few among suggested platforms cover the circumstances required for high-adhesion strength and biocompatibility, without toxicity. Antibacterial properties, controllable degradation, encapsulation capacity, detectability by image-guided procedures and affordable price are also...
-
Imunofan - RDKVYR peptide - stimulates skin cell proliferation and promotes tissue repair
PublicationRegeneration and wound healing are vital to tissue homeostasis and organism survival. One of the biggest challenges of today's science and medicine is finding methods and factors to stimulate these processes in the human body. Effective solutions to promote regenerative responses will accelerate advances in tissue engineering, regenerative medicine, transplantology, and a number of other clinical...
-
Composite Polyurethane-Polylactide (PUR/PLA) Flexible Filaments for 3D Fused Filament Fabrication (FFF) of Antibacterial Wound Dressings for Skin Regeneration
Publicationhis paper addresses the potential application of flexible thermoplastic polyurethane (TPU) and poly(lactic acid) (PLA) compositions as a material for the production of antibacterial wound dressings using the Fused Filament Fabrication (FFF) 3D printing method. On the market, there are medical-grade polyurethane filaments available, but few of them have properties required for the fabrication of wound dressings, such as flexibility...
-
In vitro studies of antimicrobial activity of Gly-His-Lys conjugates as potential and promising candidates for therapeutics in skin and tissue infections
PublicationWe presented in vitro studies of antimicrobial activity of Gly-His-Lys conjugates that are important point in preliminary biological evaluation of their potential application in skin and tissue therapy. The novel compounds include the conjugation of fatty acids with a modification of the amino acid sequence in the primary structure of Gly-His-Lys.
-
Processing of Polyester-Urethane Filament and Characterization of FFF 3D Printed Elastic Porous Structures with Potential in Cancellous Bone Tissue Engineering
PublicationThis paper addresses the potential of self-made polyester-urethane filament as a candidate for Fused Filament Fabrication (FFF)-based 3D printing (3DP) in medical applications. Since the industry does not provide many ready-made solutions of medical-grade polyurethane filaments, we undertook research aimed at presenting the process of thermoplastic polyurethane (TPU) filament formation, detailed characteristics, and 3DP of specially...
-
A facile approach to fabricate load-bearing porous polymer scaffolds for bone tissue engineering
PublicationBiodegradable porous scaffolds with oriented interconnected pores and high mechanical are load-bearing biomaterials for bone tissue engineering. Herein, we report a simple, non-toxic, and cost-effective method to fabricate high-strength porous biodegradable scaffolds, composed of a polymer matrix of polycaprolactone (PCL) and water-soluble poly (ethylene oxide) (PEO) as a sacrificial material by integrating annealing treatment,...
-
l-ascorbic acid modified poly(ester urethane)s as a suitable candidates for soft tissue engineering applications
PublicationIn this paper we created novel poly(ester urethane)s (PESUs) designed specifically for tissue engineering. The PESUs were derived from oligomeric α,ω-dihydroxy(ethylene-butylene adipate) (dHEBA), 1,4-butanediol (BDO) and aliphatic 1,6-hexamethylene diisocyanate (HDI) and modified with l-ascorbic acid to improve their biocompatibility. In addition, we determined their mechanical properties (such as tensile strength, elongation at...
-
Synthesis and characterization of novel aliphatic polyurethanes for tissue engineering applications
PublicationSummarizing, in this thesis was described the synthesis of novel PUR system, which was obtained by using aliphatic diisocyanate (HDI), amorphous macrodiol (PEBA) and chain extender (BDO). This PUR system was established as suitable for TE purpose and successfully modified with AA, which as expected improved its biocompatibility. According to this, AA-modified HDI-based PURs is the PUR system ready for further studies including...
-
Advances in Natural Polymer-Based Electrospun Nanomaterials for Soft Tissue Engineering
Publication -
Changes of color coordinates of biological tissue with superficial skin damage due to mechanical trauma
Publication -
The characterization of collagen‑based scaffolds modified with phenolic acids for tissue engineering application
PublicationThe aim of the experiment was to study the morphology of collagen-based scaffolds modified by caffeic acid, ferulic acid, and gallic acid, their swelling, and degradation rate, as well as the biological properties of scaffolds, such as antioxidant activity, hemo- and cytocompatibility, histological observation, and antibacterial properties. Scaffolds based on collagen with phenolic acid showed higher swelling rate and enzymatic...
-
Isolation of Bacteriocin-producing Staphylococcus spp. Strains from Human Skin Wounds, Soft Tissue Infections and Bovine Mastitis
PublicationA collection of 206 Staphylococcus spp. isolates was investigated for their ability to produce compounds exhibiting antistaphylococcal activity. This group included Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus xylosus strains recovered from bovine mastitis (n = 158) and human skin wounds and soft tissues infections (n = 48). Production of substances with antimicrobial activity was observed in six strains. Five...
-
Friction and flow around growing tissue in bioreactor. Proceedings of the Biomechanics 2003. Engineering Biomechanics - Biomechanics of Sport - Medical Biomechanics.
PublicationPrzedstawione zostały problemy teoretyczne związane z wyznaczaniem sił tarcia, współczynników tarcia, rozkładów wartości ciśnienia w warstwie przyściennej wytworzonej wokół hodowanej tkanki w bioreaktorze w trakcie opływu tej tkanki cieczami biologicznymi o właściwościach lepkosprężystych. Model Rivlina Ericksena lepkosprężystej cieczy biologicznej jest tu brany pod uwagę.
-
Improving osteoblasts cells proliferation via femtosecond laser surface modification of 3D-printed poly-ε-caprolactone scaffolds for bone tissue engineering applications
Publication -
A review: Fabrication of porous polyurethane scaffolds
PublicationThe aim of tissue engineering is the fabrication of three-dimensional scaffolds that can be used for the reconstruction and regeneration of damaged or deformed tissues and organs. A wide variety of techniques have been developed to create either fibrous or porous scaffolds from polymers, metals, composite materials and ceramics. However, the most promising materials are biodegradable polymers due to their comprehensive mechanical...
-
Preparation, characterization, and manufacturing of new polymeric materials for 3D printing for medical applications
PublicationThis work concerns the synthesis, formation, and characteristics of new filaments for 3D printing in FDM™/FFF technology for medical purposes. Two types of filaments were developed, i.e. degradable polyurethane and biodegradable polylactide-starch. The influence of the 3D printing process on selected filament properties was investigated. A detailed analysis of the filament formation process by the extrusion method was carried out,...
-
Polylysine for Skin Regeneration: A Review of Recent Advances and Perspectives
PublicationThere have been several attempts to find promising biomaterials for skin regeneration, among which polylysine (a homopolypeptide) has shown benefits in the regeneration and treatment of skin disorders. This class of biomaterials has shown exceptional abilities due to their macromolecular structure. Polylysine-based biomaterials can not only be used as tissue engineering scaffolds for skin regeneration, but also as drug carriers...
-
Development of polyurethanes for bone repair
PublicationThe purpose of this paper is to review recent developments on polyurethanes aimed at the design, synthesis, modifications, and biological properties in the field of bone tissue engineering. Different polyurethane systems are presented and discussed in terms of biodegradation, biocompatibility and bioactivity. A comprehensive discussion is provided of the influence of hard to soft segments ratio, catalysts, stiffness and hydrophilicity...
-
Polyurethane Composite Scaffolds Modified with the Mixture of Gelatin and Hydroxyapatite Characterized by Improved Calcium Deposition
PublicationThe skeleton is a crucial element of the motion system in the human body, whose main function is to support and protect the soft tissues. Furthermore, the elements of the skeleton act as a storage place for minerals and participate in the production of red blood cells. The bone tissue includes the craniomaxillofacial bones, ribs, and spine. There are abundant reports in the literature indicating that the amount of treatments related...
-
The influence of amorphous macrodiol, diisocyanate type and l-ascorbic acid modifier on chemical structure, morphology and degradation behavior of polyurethanes for tissue scaffolds fabrication
PublicationStudies described in this work were related to the bulk synthesis and characterization of polyurethanes (PURs) obtained with the use of cyclic 4,4′-methylene bis(cyclohexyl isocyanate) (HMDI) or linear 1,6-hexamethylene diisocyanate (HDI), amorphous α,ω-dihydroxy(ethylene-butylene adipate) macrodiol (PEBA), 1,4-butandiol (BDO) chain extender and dibutyltin dilaurate (DBTDL) catalyst. Obtained PURs were modified with l-ascorbic...
-
Application of 3D- printed hydrogels in wound healing and regenerative medicine
PublicationHydrogels are three-dimensional polymer networks with hydrophilic properties. The modifiable properties of hydrogels and the structure resembling living tissue allow their versatile application. Therefore, increasing attention is focused on the use of hydrogels as bioinks for three-dimensional (3D) printing in tissue engineering. Bioprinting involves the fabrication of complex structures from several types of materials, cells,...
-
Degradable poly(ester-ether) urethanes of improved surface calcium deposition developed as novel biomaterials
PublicationBones, which are considered as hard tissues, work as scaffold for human body. They provide physical support for muscles and protect intestinal organs. Percentage of hard tissues in human body depends on age, weight, and gender. Human skeleton consists of 206 connected bones. Therefore, it is natural that the hard-tissue damage such as fractures, osteoporosis, and congenital lack of bone may appear. The innovative way of bone healing...
-
Mathematical approach to design 3D scaffolds for the 3D printable bone implant
PublicationThis work demonstrates that an artificial scaffold structure can be designed to exhibit mechanical properties close to the ones of real bone tissue, thus highly reducing the stress-shielding phenomenon. In this study the scan of lumbar vertebra fragment was reproduced to create a numerical 3D model (this model was called the reference bone sample). New nine 3D scaffold samples were designed and their numerical models were created....
-
Detekcja osoby w wannie
PublicationStarzenie się społeczeństwa powoduje narastanie problemów chorób wieku starczego. Częstym problemem są zasłabnięcia w wannie podczas kąpieli. Celem publikacji jest przedstawienie metody identyfikacji tkanki ożywionej w wodzie z wykorzystaniem technik elektromagnetycznych. Obserwując zmiany amplitudy i częstotliwości pracy generatorów, pracujących w pętli sprzężenia zwrotnego z cewką, istnieje możliwość scharakteryzowania i określenia...
-
Experimental study on the effect of selected sterilization methods on mechanical properties of polylactide FFF specimens
PublicationPurpose: Biodegradable polymers are widely used in personalized medical devices or scaffolds for tissue engineering. The manufacturing process should be finished with sterilization procedure. However, it is not clear how the different sterilization methods have an impact on the mechanical strength of the three-dimensional (3D)-printed parts, such as bone models or personalized mechanical devices. This paper aims to present the...
-
Chitosan-based inks for 3D printing and bioprinting
PublicationThe advent of 3D-printing/additive manufacturing in biomedical engineering field has introduced great potential for the preparation of 3D structures that can mimic native tissues. This technology has accelerated the progress in numerous areas of regenerative medicine, especially led to a big wave of biomimetic functional scaffold developments for tissue engineering demands. In recent years, the introduction of smart bio-inks has...
-
Marine polymers in tissue bioprinting: Current achievements and challenges
PublicationBioprinting has a critical role in tissue engineering, allowing the creation of sophisticated cellular scaffolds with high resolution, shape fidelity, and cell viability. Achieving these parameters remains a challenge, necessitating bioinks that are biocompatible, printable, and biodegradable. This review highlights the potential of marine-derived polymers and crosslinking techniques including mammalian collagen and gelatin along...
-
Use of optical skin phantoms for calibration of dermatological lasers
PublicationA wide range of dermatological diseases can be efficiently treated using laser heating. Nevertheless, before the new laser is introduced into clinical practice, its parameters and ability to interact with human skin have to be carefully examined. In order to do that optical skin phantoms can be used. Such phantoms closely imitate the scattering and absorption properties of real human skin tissue along with its thermal properties,...
-
Bioactive core material for porous load-bearing implants
PublicationSo far state of knowledge on biodegradable materials is reviewed. Among a variety of investigated materials, those composed of polymers and ceramics may be considered as only candidates for a core material in porous titanium alloy. The collagen and chitosan among natural polymers, polyhydroxy acids among synthetic polymers, and hydroxyapatite and tricalcium phosphate among ceramics are proposed for further research. Three essential...
-
The Influence of Calcium Glycerophosphate (GPCa) Modifier on Physicochemical, Mechanical, and Biological Performance of Polyurethanes Applicable as Biomaterials for Bone Tissue Scaffolds Fabrication
PublicationIn this paper we describe the synthesis of poly(ester ether urethane)s (PEEURs) by using selected raw materials to reach a biocompatible polyurethane (PU) for biomedical applications. PEEURs were synthesized by using aliphatic 1,6-hexamethylene diisocyanate (HDI), poly(ethylene glycol) (PEG), α,ω-dihydroxy(ethylene-butylene adipate) (Polios), 1,4-butanediol (BDO) as a chain extender and calcium glycerolphosphate salt (GPCa) as...
-
Full scattering profile of circular optical phantoms mimicking biological tissue
PublicationHuman tissue is one of the most complex optical media since it is turbid and nonhomogeneous. In our poster, we suggest a new type of skin phantom and an optical method for sensing physiological tissue condition, basing on the collection of the ejected light at all exit angles, to receive the full scattering profile. Conducted experiments were carried out on an unique set-up for noninvasive encircled measurement. Set-up consisted...
-
Impact of surface skin temperature change on blood flow characteristics in palm
PublicationHeating a human palm during 3 minutes period causes changes in superficial skin temperature and leads to thermoregulation system response. The response time and level of flow characteristics change depend on the subject hand size and health of his vascular tree. A solution of Pennes bioheat propagation model was analyzed in order to see how much heat has to be transferred into the tissue to extort the observable reaction. The reflective...
-
Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospectives
PublicationIn this overview, we focused on the bacterial cellulose (BC) applications, described in recently published scientific papers, in the field of skin regenerative medicine and wound care industry. Bacterial cellulose was proven to be biocompatible with living tissues. Moreover, its mechanical properties and porous structure are considered to be suitable for biomedical applications. It is due to the fact that porous structure of bacterial...