Filters
total: 1377
filtered: 1184
displaying 1000 best results Help
Search results for: optical inceremental encoder
-
Porous Phantoms Mimicking Tissues—Investigation of Optical Parameters Stability Over Time
PublicationOptical phantoms are used to validate optical measurement methods. The stability of their optical parameters over time allows them to be used and stored over long-term periods, while maintaining their optical parameters. The aim of the presented research was to investigate the stability of fabricated porous phantoms, which can be used as a lung phantom in optical system. Measurements were performed in multiple series with an interval...
-
Properties of Eu3+ doped poly(methyl methacrylate) optical fiber
Publication -
Optical and structural properties of polycrystalline CVD diamond films grown on fused silica optical fibres pre-treated by high-power sonication seeding
PublicationIn this paper, the growth of polycrystalline chemical vapour deposition (CVD) diamond thin films on fused silica optical fibres has been investigated. The research results show that the effective substrate seeding process can lower defect nucleation, and it simultaneously increases surface encapsulation. However, the growth process on glass requires high seeding density. The effects of suspension type and ultrasonic power were...
-
Porous Phantoms Mimicking Tissues – Investigation of Optical Parameter Stability Over Time
PublicationIn terms of optical parameters, optical phantoms can now replace live tissues and be used to validate optical measurement methods. Therefore, whether these parameters would be maintained after storage for 6 months was examined. The absorption and scattering coefficients were obtained from the measured transmittance and reflectance measurements taken 6 months apart and then compared. All of the measurements were conducted using...
-
Plasma-Based Deposition and Processing Techniques for Optical Fiber Sensing
PublicationPlasma-based techniques are widely applied for well-controlled deposition, etching or surface functionalization of a number of materials. It is difficult to imagine fabrication of novel microelectronic and optoelectronic devices without using plasma-enhanced deposition of thin films, their selective etching or functionalization of their surfaces for subsequent selective binding of chemical or biological molecules. Depending on...
-
Optical Coherence Tomography for nanoparticles quantitative characterization
PublicationThe unique features of nanocomposite materials depend on the type and size of nanoparticles, as well as their placement in the composite matrices. Therefore the nanocomposites manufacturing process requires inline control over certain parameters of nanoparticles such as dispersion and concentration. Keeping track of nanoparticles parameters inside a matrix is currently a difficult task due to lack of a fast, reliable and cost effective...
-
Modeling of multi-cavity Fabry-Perot optical fiber sensors
PublicationReflectance characteristics of a two-cavity extrinsic Fabry-Perot optical fiber sensor were investigated using computer modeling. Calculations were performed using a plane wave-based approach, selected for clarity of results. Based on the modeling results, it can be concluded that the two-cavity Fabry-Perot interferometer can be used to measure two different quantities, such as refractive index and temperature, independently. It...
-
Full scattering profile of circular optical phantoms mimicking biological tissue
PublicationHuman tissue is one of the most complex optical media since it is turbid and nonhomogeneous. In our poster, we suggest a new type of skin phantom and an optical method for sensing physiological tissue condition, basing on the collection of the ejected light at all exit angles, to receive the full scattering profile. Conducted experiments were carried out on an unique set-up for noninvasive encircled measurement. Set-up consisted...
-
Time-frequency analysis in optical coherence tomography for technical objects examination
PublicationOptical coherence tomography (OCT) is one of the most advanced optical measurement techniques for complex structure visualization. The advantages of OCT have been used for surface and subsurface defect detection in composite materials, polymers, ceramics, non-metallic protective coatings, and many more. Our research activity has been focused on timefrequency spectroscopic analysis in OCT. It is based on time resolved spectral analysis...
-
The passive operating mode of the linear optical gesture sensor
PublicationThe study evaluates the influence of natural light conditions on the effectiveness of the linear optical gesture sensor, working in the presence of ambient light only (passive mode). The orientations of the device in reference to the light source were modified in order to verify the sensitivity of the sensor. A criterion for the differentiation between two states - "possible gesture" and "no gesture" - was proposed. Additionally,...
-
Interactions using passive optical proximity detector
PublicationIn this paper we evaluated the possible application of a passive, optical sensor as an interface for human-smart glasses interactions. The designed proximity sensor is composed of set of photodiodes and the appropriate hardware and software components. First, experiments were performed for the estimations of such parameters as distance to an object, its width and velocity. Achieved results were satisfactory. Therefore, next, a...
-
Optical properties of boron-doped nanocrystalline diamond films studied by spectroscopic ellipsometry
PublicationThe optical properties of boron-doped nanocrystalline diamond films, coated using Microwave Plasma Enhanced Chemical Vapour Deposition (μPE CVD) system, were analyzed by spectroscopic ellipsometry. Diamond films were deposited on silicon substrates. The ellipsometry data (refractive index (n(λ)), extinction coefficient (k(λ)) were modeled using dedicated software. Evolution of the optical structure with boron doping was observed...
-
Electrochemically directed biofunctionalization of a lossy-mode resonance optical fiber sensor
PublicationIn this work, we present a direct electrochemical biofunctionalization of an indium-tin-oxide-coated lossy-mode resonance optical fiber sensor. The functionalization using a biotin derivative was performed by cyclic voltammetry in a 10 mM biotin hydrazide solution. All stages of the experiment were simultaneously verified with optical and electrochemical techniques. Performed measurements indicate the presence of a poly-biotin...
-
Latent fingerprint imaging by spectroscopic optical coherence tomography
PublicationOptical coherence tomography (OCT) is a non-contact and non-invasive optical method for evaluating semitransparent and scattering objects. Its unique features, such as non-destructive 3D measurements of tested objects with a fast scanning rate, make this technique interesting for latent fingerprint reading, which is the subject of this paper. So far, OCT has not found widespread use for reading fingerprints directly from surfaces...
-
Optical properties of spirooxazine-doped PMMA fiber for new functional applications
Publication -
Cost-Efficient Optical Fronthaul Architectures for 5G and Future 6G Networks
PublicationFifth-generation and Beyond (5GB) wireless networks have introduced new centralized architectures such as cloud radio access network (CRAN), which necessitate extremely high-capacity low latency Fronthaul (FH). CRAN has many advantageous features in terms of cost reduction, performance enhancement, ease of deployment, and centralization of network management. Nevertheless, designing and deploying a cost-efficient FH is still a...
-
Structural and optical investigations of sol-gel derived lithium titanate thin films
Publicationin this paper structural and optical studies of lithium titanate (lto) thin films are presented. nanocrystalline thin films with 800 nm thickness were prepared by sol-gel method. to examine the influence of the annealing time on as-prepared films crystallization, the coatings were heated at 550 °c for 10, 20 and 80 h. structure of manufactured thin films was investigated using x-ray diffraction (xrd). the most visible lithium titanate...
-
Liquid crystalline optical components for application in optical sensing
PublicationW artykule opisano proces wytwarzania pryzmatów Wollastona na bazie roztworu ciekłokrystalicznego ZLI-1957 i płytek falowych na bazie prekursora polimeru ciekłokrystalicznego RMS03-001. Przedstawiono uzyskane parametry optyczne elementów pod kątem ich potencjalnych aplikacji
-
PROGRAMMABLE YANG - BASED INTERFACE IN CONTROL OF OPTICAL TRANSPORT NETWORK
PublicationSince over a decade we observe intensive effort of research institutions and industrial consortia on extending flexibility and automation of the transport network control also known under the term network programmability. Key aspect of each programming interface is ability to evolve but also sensitivity to future modifications. As indicated in the past work in the specific context of optical transport networks an important criterion...
-
Model of optical phantoms thermal response upon irradiation with 975 nm dermatological laser
PublicationWe have developed a numerical model describing the optical and thermal behavior of optical tissue phantoms upon laser irradiation. According to our previous studies, the phantoms can be used as substitute of real skin from the optical, as well as thermal point of view. However, the thermal parameters are not entirely similar to those of real tissues thus there is a need to develop mathematical model, describing the thermal and...
-
Novel approach to modeling spectral-domain optical coherence tomography with Monte Carlo method
PublicationNumerical modeling Optical Coherence Tomography (OCT) systems is needed for optical setup optimization, development of new signal processing methods and assessment of impact of different physical phenomena inside the sample on OCT signal. The Monte Carlo method has been often used for modeling Optical Coherence Tomography, as it is a well established tool for simulating light propagation in scattering media. However, in this method...
-
The Optical Coherence Tomography and Raman Spectroscopy for Sensing of the Bone Demineralization Process
PublicationThe presented research was intended to seek new optical methods to investigate the demineralization process of bones. Optical examination of the bone condition could facilitate clinical trials and improve the safety of patients. The authors used a set of complementary methods: polarization-sensitive optical coherence tomography (PS-OCT) and Raman spectroscopy. Chicken bone samples were used in this research. To stimulate in laboratory...
-
Investigation of H2:CH4 plasma composition by means of spatially resolved optical spectroscopy
PublicationThe system based on spatially resolved optical emission spectroscopy dedicated for in situ diagnostics of plasma assisted CVD processes is presented in this paper. Measurement system coupled with chemical vapour deposition chamber by dedicated fiber-optic paths enables investigation of spatial distribution of species densities (Hx, H+, CH, CH+) during chemical vapour deposition process. Experiments were performed for a various...
-
Planning a Cost-Effective Delay-Constrained Passive Optical Network for 5G Fronthaul
PublicationWith the rapid growth in the telecommunications industry moving towards 5G and beyond (5GB) and the emergence of data-hungry and time-sensitive applications, Mobile Network Operators (MNOs) are faced with a considerable challenge to keep up with these new demands. Cloud radio access network (CRAN) has emerged as a cost-effective architecture that improves 5GB performance. The fronthaul segment of the CRAN necessitates a high-capacity...
-
Label‐free optical detection of cyclosporine in biological fluids
PublicationIn this paper, a spectroscopic method for determination of cyclosporine concentrations in biological fluids is presented. Blood plasma and hemoglobin solutions are chosen for the experiment. For various cyclosporine concentrations in blood plasma and hemoglobin, absorbance measurements in spectra range from 600 to 1100 nm are performed. The measurement results are analyzed by the use of a dedicated algorithm. The obtained data...
-
Microcrystalline diamond film evaluation by spectroscopic optical coherence tomography
PublicationThis study has focused on the microcrystalline diamond film (MCD) thickness evaluation. For this purpose, optical coherence tomography (OCT) enhanced by spectroscopic analysis has been used as a method of choice. The average thickness of the tested layer was about 1.5 µm, which is below the standard 2-point OCT resolution. In this case, the usefulness of the spectroscopic analysis was confirmed for the evaluation of the thickness...
-
MONTE CARLO MODELING OF OPTICAL SENSOR FOR POST-OPERATIVE FREE FLAP MONITORING
PublicationAfter a preliminary study of the currently employed methods in vitality monitoring of the tissue flaps (TRAM, DIEP, SIEA), a usefulness of optical techniques is discussed. It seems that one of the most promising in monitoring tissue flaps blood flow is a near infrared spectrometry (NIRS). However, a special design of a measurement sensor has to be developed. First, basing on the literature study an optical “window” is characterized....
-
Electrochemical performance of indium-tin-oxide-coated lossy-mode resonance optical fiber sensor
PublicationAnalysis of liquids performed in multiple domain, e.g., optical and electrochemical (EC), has recently focus significant attention. Our previous works have shown that a simple device based on indium-tin-oxide (ITO) coated optical fiber core may be used for optical monitoring of EC processes. At satisfying optical properties and thickness of ITO a lossy-mode resonance (LMR) effect can be obtained and used for monitoring of optical...
-
Simultaneous optical and electrochemical label-free biosensing with ITO-coated lossy-mode resonance sensor
PublicationIn this work we discuss a new label-free biosensing device based on indium tin oxide (ITO) overlaid section of a multimode optical fiber fused silica core. The sensor has been used to optical measurements also simultaneously interrogated electrochemically (EC). Due to optimized thickness and optical properties of ITO film, a lossy-mode resonance (LMR) could be observed in the optical domain, where electrical properties of the film...
-
Detection of immunological agent by optical fiber sensor: preliminary study
PublicationThe objective of this study is the application of optical methods for detection of immunological agent concentration. As the agent we used the Cyclaid, produced by Apotex Inc. In this article we investigated different Cyclaid concentrations in water. We used a Fabry-Pérot interferometer working in a reflective mode, the measurements were performed with source with central wavelength λ = 1550 nm. The preliminary investigation have...
-
Optical activity and electro-optic effect of l-arginine doped KDP single crystals
PublicationWe have used the modified polarimetric methods to study optical activity (OA) in the potassium dihydrogenphosphate (KDP) crystals doped with 0.7, 1.4 and 3.8 wt% L-arginine (L-arg) amino acid. Crystals were grown by the temperature reduction method. Small changes of the absolute eigen waves ellipticity and OA values in doped crystals were noted. We have experimentally determined the signs of OA in the [1 00] and [01 0] directions...
-
Chiral-based optical and electrochemical biosensors: Synthesis, classification, mechanisms, nanostructures, and applications
PublicationThis review seeks to collect, summarize, classify and discuss the latest advances in chiral-based optical biosensors. Starting from the identification of chiral molecules, photoluminescence, and electrochemical sensors, applications of chiral structures in biosensing molecules are reviewed. Then, biosensors working on the basis of chirality are classified, followed by summarizing the outcomes of research works on design, synthesis,...
-
Optical method for verification of homogeneity of phantoms for calibration of magnetic resonance
PublicationThe primary purpose of this study was to develop a laboratory photonic set-up for characterisation of homogeneity of gel phantoms for calibration of magnetic resonance. In this system, optical coherence tomography allows the detection of micro- and macroscopic heterogeneities of a structure. The set-up was used to perform measurements of agar and agar-carrageenan gels, which are the basis for more complex phantoms for magnetic...
-
Design of Cost-Efficient Optical Fronthaul for 5G/6G Networks: An Optimization Perspective
PublicationCurrently, 5G and the forthcoming 6G mobile communication systems are the most promising cellular generations expected to beat the growing hunger for bandwidth and enable the fully connected world presented by the Internet of Everything (IoE). The cloud radio access network (CRAN) has been proposed as a promising architecture for meeting the needs and goals of 5G/6G (5G and beyond) networks. Nevertheless, the provisioning of cost-efficient...
-
Optical investigations of electrochemical processes using a long-period fiber grating functionalized by indium tin oxide
Publicationhe growing needs for fast and reliable sensing devices stimulate development of new technological solutions. In this work a new multi-domain sensing method is demonstrated where optical sensing device has been applied to enhance amount of data received during electrochemical analysis. Thin, optically transparent, high-refractive-index, and electrically conductive indium tin oxide (ITO) film was deposited using magnetron sputtering...
-
Efficient signal processing in spectroscopic optical coherence tomography
PublicationSpectroscopic optical coherence tomography (SOCT) is an extension of a standard OCT technique, which allows to obtain depth-resolved, spectroscopic information on the examined sample. It can be used as a source of additional contrast in OCT images e.g. by encoding certain features of the light spectrum into the hue of the image pixels. However, SOCT require computation of time-frequency distributions of each OCT A-scan, what is...
-
Semi complex navigation with an active optical gesture sensor
PublicationThis paper presents the methods of diversified touchless interactions between a user and a mobile platform utilizing the optical gesture sensor. The sensor uses 8 photodiodes to measure the reflected light in the active mode (using embedded LEDs) or it measures shadows caused by fingers in the passive mode. Several algorithms were implemented: automatic mode switching, adaptive illumination level compensation, resolution improvements...
-
Detection of petroleum products using optical coherence tomography
PublicationIn this work, we present a novel method developed for the analysis of the properties of thin layers for detecting petroleum products on a water surface using a commercially available optical coherence tomography (OCT) system. The spectral density analysis of the signal from a spectroscopic OCT (S-OCT) enables us to perform the precision calculation of the thin layer thickness and other properties like homogeneity, and dispersion,...
-
Integrated acoustical-optical system for inventory of hydrotechnical objects
PublicationThe knowledge of the location, shape and other characteristics of spatial objects in the coastal areas has a significant impact on the functioning of ports, shipyards, and other waterinfrastructure facilities, both offshore and inland. Therefore, measurements of the underwater part of the waterside zone are taken, which means the bottom of the water and other underwater objects (e.g. breakwaters, docks, etc.), and objects above...
-
Optoelectronic and non-linear optical properties of Lu-doped AgGaGe3Se8 crystallites
Publication -
Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks
PublicationIn this paper, the optical linear sensor, a representative of low-resolution sensors, was investigated in the multiclass recognition of near-field hand gestures. The recurrent neural network (RNN) with a gated recurrent unit (GRU) memory cell was utilized as a gestures classifier. A set of 27 gestures was collected from a group of volunteers. The 27 000 sequences obtained were divided into training, validation, and test subsets....
-
Surface quality control of a thin SiN layer by optical measurements
PublicationFiber optic interferometers have a wide range of applications, including biological and chemical measurements. Nevertheless, in the case of a reflective interferometer setup, standard silver mirrors cannot be used in every measurement, due to their chemical activity. This work investigates the surface quality of a thin optical layer of silicon nitride (SiN), which can serve as an alternative material for silver mirrors. We present...
-
Nonlinearity shaping in nanostructured glass-diamond hybrid materials for optical fiber preforms
PublicationNanodiamond integration with optical fibers has proved a compelling methodology for magneto-optics. We reveal that the applicability of nanodiamonds in nonlinear optics goes beyond the previous demonstrations of frequency converters. Instead, we exploit the recently reported volumetric integration of nanodiamonds along the optical fiber core and show that the nonlinear response of glasses can be manipulated by nanodiamonds. By...
-
Optical properties of thin TiO2 film deposited on the fiber optic sensor head
PublicationThe presented study was focused on investigation of the titanium dioxide (TiO2) thin film deposited on the fiber tip. The intention of this investigation was using TiO2 film in the construction of the optical fiber sensor head. In the demonstrated construction TiO2 thin layer was deposited on the tip of a commonly used telecommunication single mode optical fiber (SMF-28) by means of the Atomic Layer Deposition (ALD). Thickness...
-
Improved surface coverage of an optical fibre with nanocrystalline diamond by the application of dip-coating seeding
PublicationGrowth processes of diamond thin films on the fused silica optical fibres (10 cm in length) were investigated at various temperatures. Fused silica pre-treatment by dip-coating in a dispersion consisting of detonation nanodiamond (DND) in dimethyl sulfoxide (DMSO) with polyvinyl alcohol (PVA) was applied. Nanocrystalline diamond (NCD) films were deposited on the fibres using the microwave plasma assisted chemical vapour deposition...
-
Efficient Complex Root Finding Algorithm for Microwave and Optical Propagation Problems
PublicationArticle relates to the use of innovative root finding algorithm (on a complex plane) to study propagation properties of microwave and optical waveguides. Problems of this type occur not only in the analysis of lossy structures, but also in the study of complex and leaky modes (radiation phenomena). The proposed algorithm is simple to implement and can be applied for functions with singularities and branch cuts in the complex plane...
-
In-situ optical diagnostics of boron-doped diamond films growth
PublicationInterferometry is a desirable method for in-situ measurement of thin, dielectric film growth, as it don't modify conditions of film deposition. Here we present interferometrical measurements of thickness of doped diamond films during Chemical Vapor Deposition (CVD) process. For this purpose we used a semiconductor laser with a 405nm wavelength. Additional ex-situ measurement using spectral interferometry and ellipsometry...
-
Estimation of the amplitude of the signal for the active optical gesture sensor with sparse detectors
PublicationIn this paper we deal with the problem of precise gesture recognition for the active optical proximity sensor with sparse 8 photodiodes. We particularly focus on developing the method of estimating the real, usually not observable, maximum signal value representing maximum intensity of light reflected from an obstacle present in the front of the sensor. Different configurations of the fingers were used as an obstacle. The Monte Carlo...
-
Parallel multithread computing for spectroscopic analysis in optical coherence tomography
PublicationSpectroscopic Optical Coherence Tomography (SOCT) is an extension of Optical Coherence Tomography (OCT). It allows gathering spectroscopic information from individual scattering points inside the sample. It is based on time-frequency analysis of interferometric signals. Such analysis requires calculating hundreds of Fourier transforms while performing a single A-scan. Additionally, further processing of acquired spectroscopic information...
-
Second and third harmonic nonlinear optical process in spray pyrolysed Mg:ZnO thin films
Publication