Filters
total: 301
filtered: 282
Search results for: COMPUTATIONAL MODELS
-
Stirling engines - the state of technology development and computational models
PublicationStirling engines represent a technologically important solution in combined heat and power systems. Their use enables the achievement of over 90 percent efficiency in the management of the primary energy source with a very high durability of the device, mainly due to the lack of contact of the working gas with external factors and a very small number of mechanical components. The use of a Stirling engine may be equally important...
-
A literature review on computational models for laminated composite and sandwich panels
PublicationW artykule przedstawiono przegląd modeli obliczeniowych stosowanych w analizie laminowanych powłok kompozytowych i sandwiczowych. W przeglądzie uwzględniono ponad 200 pozycji literatury traktujących o modelach teoretycznych dla płyt i powłok wielo-warstowych oraz/lub o implementacjach numerycznych różnych modeli obliczeniowych. Jako podstawową konkluzję z dokonanego przeglądu, należy uznać, że nie istnieje jeden uniwersalny model...
-
Correlation–polarization effects in electron/positron scattering from acetylene: A comparison of computational models
PublicationDifferent computational methods are employed to evaluate elastic (rotationally summed) integral and differential cross sections for low energy (below about 10 eV) positron scattering off gas-phase C2H2 molecules. The computations are carried out at the static and static-plus-polarization levels for describing the interaction forces and the correlation–polarization contributions are found to be an essential component for the correct...
-
Efficient knowledge-based optimization of expensive computational models using adaptive response correction
PublicationComputer simulation has become an indispensable tool in engineering design as they allow an accurate evaluation of the system performance. This is critical in order to carry out the design process in a reliable manner without costly prototyping and physical measurements. However, high-fidelity computer simulations are computationally expensive. This turns to be a fundamental bottleneck when it comes to design automation using numerical...
-
Reduced order models in computational electromagnetics (in memory of Ruediger Vahldieck)
PublicationThis paper reviews research of Ruediger Vahldieck's group and the group at the Gdansk University of Technology in the area of model order reduction techniques for accelerating full-wave simulations. The applications of reduced order models to filter design as well as of local and nested(multilevel) macromodels for solving 3D wave equations and wave-guiding problems using finite difference and finite element methods are discussed.
-
Consensus models: Computational complexity aspects in modern approaches to the list coloring problem
PublicationArtykuł poświęcony jest nowym modelom konsensusowego kolorowania grafów. Artykuł zawiera omówienie trzech takich modeli, analizę ich złożoności obliczeniowej oraz wielomianowy algorytm dla częściowych k-drzew, dla tzw. modelu addytywnego.
-
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
PublicationThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...
-
Aerodynamic shape optimization by variable-fidelity computational fluid dynamics models: a review of recent progress
PublicationA brief review of some recent variable-fidelity aerodynamic shape optimization methods is presented.We discuss three techniques that—by exploiting information embedded in low-fidelity computationalfluid dynamics (CFD) models—are able to yield a satisfactory design at a low computational cost, usu-ally corresponding to a few evaluations of the original, high-fidelity CFD model to be optimized. Thespecific techniques considered here...
-
Application of computational intelligence models in IoMT big data for heart disease diagnosis in personalized health care
Publication -
Symbolic multibody models for digital-twin applications
PublicationSymbolic generation of multibody systems equations of motion appeared in the 1980s. In addition to their computational advantage over their numerical counterparts, symbolic models can be very easily and straightforwardly interfaced with a wide range of software environments and hardware devices. These two features place this approach in a pole position to participate and intervene in the design of digital twins for systems such...
-
Comparative analysis of different numerical models of a steel radial gate
PublicationHydrotechnical structures are important components in water management system and general flooding safety. Their reliability should be ensured since potential damage might lead to catastrophic consequences. Weir gates are considered to be highly vulnerable elements of each hydro power plant, with regard to its dynamic resistance. The aim of the paper is to compare different numerical models and their influence on the results of...
-
Diagnostic Models and Estimators for LDI in Transmission Pipelines
PublicationThis article considers and compares four analytical models of the pipeline flow process for leak detection and location tasks. The synthesis of these models is briefly outlined. Next, the methodology for generating data and diagnosing pipes is described, as well as experimental settings, assumptions and implemented scenarios. Finally, the quality of model-based diagnostic estimators has been evaluated for their bias, standard deviations...
-
On the Structure of Time in Computational Semantics of a Variable-Step Solver for Hybrid Behavior Analysis
PublicationHybrid dynamic systems combine continuous and discrete behavior. Often, computational approaches are employed to derive behaviors that approximate the analytic solution. An important part of this is the approximation of differential equation behavior by numerical integration. The accuracy and computational efficiency of the integration usually depend on the complexity of the method and its implicated approximation errors, especially...
-
Optimal shape design of multi-element trawl-doors using local surrogate models
PublicationTrawl-doors have a large influence on the fuel consumption of fishing vessels. Design and optimiza-tion of trawl-doors using computational models are a key factor in minimizing the fuel consump-tion. This paper presents an optimization algorithm for the shape design of trawl-door shapes using computational fluid dynamic (CFD) models. Accurate CFD models are computationally expensive. Therefore, the direct use of traditional optimization...
-
Efficient Surrogate Modeling and Design Optimization of Compact Integrated On-Chip Inductors Based on Multi-Fidelity EM Simulation Models
PublicationHigh-performance and small-size on-chip inductors play a critical role in contemporary radio-frequency integrated circuits. This work presents a reliable surrogate modeling technique combining low-fidelity EM simulation models, response surface approximations based on kriging interpolation, and space mapping technology. The reported method is useful for the development of broadband and highly accurate data-driven models of integrated...
-
A review on analytical models of brushless permanent magnet machines
PublicationThis study provides an in-depth investigation of the use of analytical and numerical methods in analyzing electrical machines. Although numerical models such as the finite-element method (FEM) can handle complex geometries and saturation effects, they have significant computational burdens, are time-consuming, and are inflexible when it comes to changing machine geometries or input values. Analytical models based on magnetic equivalent...
-
Numerical simulation of asphalt mixtures fracture using continuum models
PublicationThe paper considers numerical models of fracture processes of semi-circular asphalt mixture specimens subjected to three-point bending. Parameter calibration of the asphalt mixture constitutive models requires advanced, complex experimental test procedures. The highly non-homogeneous material is numerically modelled by a quasicontinuum model. The computational parameters are averaged data of the components, i.e. asphalt, aggregate...
-
Approximate and analytic flow models for leak detection and identification
PublicationThe article presents a comprehensive quantitative comparison of four analytical models that, in different ways, describe the flow process in transmission pipelines necessary in the task of detecting and isolating leaks. First, the analyzed models are briefly presented. Then, a novel model comparison framework was introduced along with a methodology for generating data and assessing diagnostic effectiveness. The study presents basic...
-
Towards an experience based collective computational intelligence for manufacturing
PublicationKnowledge based support can play a vital role not only in the new fast emerging information and communication technology based industry, but also in traditional manufacturing. In this regard, several domain specific research endeavors have taken place in the past with limited success. Thus, there is a need to develop a flexible domain independent mechanism to capture, store, reuse, and share manufacturing knowledge. Consequently,...
-
A Hyperdense Semantic Domain for Discontinuous Behavior in Physical System Models
PublicationMultiple time models have been proposed for the formalization of hybrid dynamic system behavior. The superdense notion of time is a well-known time model for describing event-based systems where several events can occur simultaneously. Hyperreals provide a domain for defining the semantics of hybrid models that is elegantly aligned with first principles in physics. This paper discusses the value of both time models and shows how...
-
Trawl-Door Shape Optimization with 3D CFD Models and Local Surrogates
PublicationDesign and optimization of trawl-doors are key factors in minimizing the fuel consumption of fishing vessels. This paper discusses optimization of the trawl-door shapes using high-fidelity 3D computational fluid dynamic (CFD) models. The accurate 3D CFD models are computationally expensive and, therefore, the direct use of traditional optimization algorithms, which often require a large number of evaluations, may be prohibitive....
-
Flow Process Models for Pipeline Diagnosis
PublicationThis chapter examines the problem of modeling and parameterization of the transmission pipeline flow process. First, the base model for discrete time is presented, which is a reference for other developed models. Then, the diagonal approximation (AMDA) method is proposed, in which the tridiagonal sub-matrices of the recombination matrix are approximated by their diagonal counterparts, which allows for a simple determination of...
-
Numerical Issues and Approximated Models for the Diagnosis of Transmission Pipelines
PublicationThe chapter concerns numerical issues encountered when the pipeline flow process is modeled as a discrete-time state-space model. In particular, issues related to computational complexity and computability are discussed, i.e., simulation feasibility which is connected to the notions of singularity and stability of the model. These properties are critical if a diagnostic system is based on a discrete mathematical model of the flow...
-
Computational modelling of historic masonry railroad arch bridges
PublicationThe problems encountered during the analyzes of structural response of historic masonry railroad arch bridges are described in this paper. The attention is mainly focused on the stiffness of the masonry arches, their strengths and appropriate estimation of railroad load intensity. Issues related to computational modelling of two, existing, almost 130 years old masonry arch railroad bridges are presented in this context. The main...
-
Periodic Properties of 1D FE Discrete Models in High Frequency Dynamics
PublicationFinite element discrete models of various engineering 1D structures may be considered as structures of certain periodic characteristics. The source of this periodicity comes from the discontinuity of stress/strain field between the elements. This behaviour remains unnoticeable, when low frequency dynamics of these structures is investigated. At high frequency regimes, however, its influence may be strong enough to dominate calculated...
-
Experimental and Computational Analysis of the Ship Propeller in Open Water Conditions for Inclined Flow
PublicationThe paper presents the results of computational analyses simulating the open water tests of ship propeller in inclined flow. The results of computations are compared with the results of corresponding experimental analyses carried out in the towing tank of Ship Design and Research Centre (CTO S.A.). The object of the research was the model propeller identified as CP469. The aim of the study was to validate the results of numerical...
-
Variable-fidelity CFD models and co-Kriging for expedited multi-objective aerodynamic design optimization
PublicationPurpose – Strategies for accelerated multi-objective optimization of aerodynamic surfaces are investigated, including the possibility of exploiting surrogate modeling techniques for computational fluid dynamic (CFD)-driven design speedup of such surfaces. The purpose of this paper is to reduce the overall optimization time. Design/methodology/approach – An algorithmic framework is described that is composed of: a search space reduction,...
-
Comparison of soil models in the thermodynamic analysis of a submarine pipeline buried in seabed sediments
PublicationThis paper deals with mathematical modelling of a seabed layer in the thermodynamic analysis of a submarine pipeline buried in seabed sediments. The existing seabed soil models: a “soil ring” and a semi-infinite soil layer are discussed in a comparative analysis of the shape factor of a surrounding soil layer. The meaning of differences in the heat transfer coefficient of a soil layer is illustrated based on a computational example...
-
Comparative Study of Integer and Non-Integer Order Models of Synchronous Generator
PublicationThis article presents a comparison between integer and non-integer order modelling of a synchronous generator, in the frequency domain as well as in the time domain. The classical integer order model was compared to one containing half -order systems. The half-order systems are represented in a Park d-q axis equivalent circuit as impedances modelled by half-order transmittances. Using a direct method based on the approximation...
-
Modeling of Performance, Reliability and Energy Efficiency in Large-Scale Computational Environment
PublicationLarge scale of complexity of distributed computational systems imposes special challanges for prediction of quality in such systems.Existing quality models for lower-scale systems include functionality,performance,reliability,flexibility and usability.Among these attributes,performance and reliability have a particular significance to the large-scale systems computing quality modeling due to their strong dependence on the system...
-
Modeling of medium flow processes in transportation pipelines - the synthesis of their state-space models and the analysis of the mathematical properties of the models for leak detection purposes
PublicationThe dissertation concerns the issue of modeling the pipeline flow process under incompressible and isothermal conditions, with a target application to the leak detection and isolation systems. First, an introduction to the model-based process diagnostics is provided, where its basic terminology, tools, and methods are described. In the following chapter, a review of the state of the art in the field of leak detection and isolation...
-
On the interspike-intervals of periodically-driven integrate-and-fire models
PublicationWe analyze properties of the firing map, which iterations give information about consecutive spikes, for periodically driven linear integrate-and-fire models. By considering locally integrable (thus in general not continuous) input functions, we generalize some results of other authors. In particular, we prove theorems concerning continuous dependence of the firing map on the input in suitable function spaces. Using mathematical...
-
Modeling of Performance, Reliability and Energy Efficiency in Large-Scale Computational Environments
PublicationLarge scale of complexity of distributed computational systems imposes special challenges for prediction of quality in such systems. Existing quality models for lower-scale systems include functionality, performance, reliability, flexibility and usability. Among these attributes, performance and reliability have a particular significance to the large-scale systems computing quality modeling due to their strong dependence on the...
-
On Nature-Inspired Design Optimization of Antenna Structures Using Variable-Resolution EM Models
PublicationNumerical optimization has been ubiquitous in antenna design for over a decade or so. It is indispensable in handling of multiple geometry/material parameters, performance goals, and constraints. It is also challenging as it incurs significant CPU expenses, especially when the underlying computational model involves full-wave electromagnetic (EM) analysis. In most practical cases, the latter is imperative to ensure evaluation reliability....
-
Matrix Strengthening the Identification of Observations with Split Functional Models in the Squared Msplit(q) Estimation Process
PublicationThis article addresses the issue of raising the level of identification of observations with either single or more split functional models in the squared Msplit(q) estimation process. The theoretical part of the study presents the theoretical grounds for the classical method for estimating parameters in a split functional model and proposes a modification of the computational algorithm to increase the quality of the determinations...
-
Rapid design optimization of antennas using variable-fidelity EM models and adjoint sensitivities
PublicationPurpose – Development of techniques for expedited design optimization of complex and numerically expensive electromagnetic (EM) simulation models of antenna structures validated both numerically and experimentally. The paper aims to discuss these issues. Design/methodology/approach – The optimization task is performed using a technique that combines gradient search with adjoint sensitivities, trust region framework, as well as...
-
Turbulence models impact on the flow and thermal analyses of jet impingement
PublicationAccurate numerical reconstruction of heat and mass transfer processes in particular applications, such a jet impingement, is difficult to obtain even with the use of modern computational methods. In the proposed paper, the flow and thermal phenomena occurring during single minijet impingement on the flat, concave and convex, heated surfaces were considered. Problem of impingement on non-flat surface, still not common and purely...
-
Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on non-local Moore–Gibson–Thompson approach
PublicationIn this investigation, a computational analysis is conducted to study a magneto-thermoelastic problem for an isotropic perfectly conducting half-space medium. The medium is subjected to a periodic heat flow in the presence of a continuous longitude magnetic field. Based on Moore–Gibson–Thompson equation, a new generalized model has been investigated to address the considered problem. The introduced model can be formulated by combining...
-
Scalability of surrogate-assisted multi-objective optimization of antenna structures exploiting variable-fidelity electromagnetic simulation models
PublicationMulti-objective optimization of antenna structures is a challenging task due to high-computational cost of evaluating the design objectives as well as large number of adjustable parameters. Design speedup can be achieved by means of surrogate-based optimization techniques. In particular, a combination of variable-fidelity electromagnetic (EM) simulations, design space reduction techniques, response surface approximation (RSA) models,...
-
„Eulerian – Eulerian” versus ,,Eulerian –Lagrangean” models of condensation
PublicationLiquid phase in the flowing vapor through stages of the steam turbine is the cause of a lot of failures. Nowadays, due to work of steam turbines at partial load, process of homogeneous and heterogeneous condensation still is current. The formation of drops of condensate under conditions other than nominal operation of turbine is a process still unknown. Engineers and designers involved in the development of power station machines...
-
LNG TANK IN ŚWINOUJŚCIE: NONLINEAR ANALYSIS OF THE TANK DOME ELEMENTS BEHAVIOUR
PublicationIn this paper, the dome of a tank in the Świnoujście LNG terminal is analysed. Some of the rafter ribs at the connection with hangers were not mounted during construction of the tank dome. Therefore, it has become necessary to estimate its response, which has been done with the aid of some computational models of the dome, that have been created in the finite element method environment. Different local models are studied, aiming...
-
Advanced Potential Energy Surfaces for Molecular Simulation
PublicationAdvanced potential energy surfaces are defined as theoretical models that explicitly include many-body effects that transcend the standard fixed-charge, pairwise-additive paradigm typically used in molecular simulation. However, several factors relating to their software implementation have precluded their widespread use in condensed-phase simulations: the computational cost of the theoretical models, a paucity of approximate models...
-
Fundamentals of Physics-Based Surrogate Modeling
PublicationChapter 1 was focused on data-driven (or approximation-based) modeling methods. The second major class of surrogates are physics-based models outlined in this chapter. Although they are not as popular, their importance is growing because of the challenges related to construction and handling of approximation surrogates for many real-world problems. The high cost of evaluating computational models, nonlinearity of system responses,...
-
Multiobjective Aerodynamic Optimization by Variable-Fidelity Models and Response Surface Surrogates
PublicationA computationally efficient procedure for multiobjective design optimization with variable-fidelity models and response surface surrogates is presented. The proposed approach uses the multiobjective evolutionary algorithm that works with a fast surrogate model, obtained with kriging interpolation of the low-fidelity model data enhanced by space-mapping correction exploiting a few high-fidelity training points. The initial Pareto...
-
On low-fidelity models for variable-fidelity simulation-driven design optimization of compact wideband antennas
PublicationThe paper addresses simulation-driven design optimization of compact antennas involving variable-fidelity electromagnetic (EM) simulation models. Comprehensive investigations are carried out concerning selection of the coarse model discretization density. The effects of the low-fidelity model setup on the reliability and computational complexity of the optimization process are determined using a benchmark set of three ultra-wideband...
-
Multi-objective optimization of expensive electromagnetic simulation models
PublicationVast majority of practical engineering design problems require simultaneous handling of several criteria. For the sake of simplicity and through a priori preference articulation one can turn many design tasks into single-objective problems that can be handled using conventional numerical optimization routines. However, in some situations, acquiring comprehensive knowledge about the system at hand, in particular, about possible...
-
Type III Responses to Transient Inputs in Hybrid Nonlinear Neuron Models
PublicationExperimental characterization of neuronal dynamics involves recording both of spontaneous activity patterns and of responses to transient and sustained inputs. While much theoretical attention has been devoted to the spontaneous activity of neurons, less is known about the dynamic mechanisms shaping their responses to transient inputs, although these bear significant physiological relevance. Here, we study responses to transient...
-
Nuclear Power Plant Steam Turbine - Modeling for Model Based Control Purposes
PublicationThe nature of the processes taking place in a nuclear power plant (NPP) steam turbine is the reason why their modeling is very difficult, especially when the model is intended to be used for on-line optimal model based process control over a wide range of operating conditions, caused by changing electrical power demand e.g. when combined heat and power mode of work is utilized. The paper presents three nonlinear models of NPP steam...
-
Nonlocal Models of Plates and Shells with Applications in Micro- and Nanomechanics
PublicationNowadays, the use of small-scale structures in micro/nanomachines has become more and more widespread. The most important applications of such small-sized parts are in micro-electro-mechanical systems (MEMS) as well as nano-electro-mechanical systems (NEMS) as actuators, sensors, energy harvesters. For example, nanosensors are nanoscale devices that measure physical quantities and convert these to signals that can be detected and...
-
Raz jeszcze o obciążeniu hydrodynamicznym falochronu pionowościennego falą stojącą
PublicationPrzedstawienie istniejących modeli matematycznych opisujących rozkłady ciśnienia hydrodynamicznego na falochron pionowościenny w wyniku oddziaływania fali stojącej. Analiza nieciągłości ciśnienia. Jakościowe porównanie metod obliczeniowych dla wybranych warunków wodno-falowych.