displaying 1000 best results Help
Search results for: optical method
-
Pose classification in the gesture recognition using the linear optical sensor
PublicationGesture sensors for mobile devices, which have a capability of distinguishing hand poses, require efficient and accurate classifiers in order to recognize gestures based on the sequences of primitives. Two methods of poses recognition for the optical linear sensor were proposed and validated. The Gaussian distribution fitting and Artificial Neural Network based methods represent two kinds of classification approaches. Three types...
-
Dual-wavelength polarimeter application in investigations of the optical activity of a langasite crystal
PublicationA method of high accuracy polarimetry, which includes optical activity measurements systematic errors, was realized with dual-wavelength polarimeter for two wavelengths of 635 and 650 nm. Simultaneous measurements with neighboring wavelengths significantly improved the data processing, by increasing the amount of data to eliminate the systematic errors. For langasite crystal La3Ga5SiO14 we measured temperature dependence of the...
-
Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks
PublicationIn this paper, the optical linear sensor, a representative of low-resolution sensors, was investigated in the multiclass recognition of near-field hand gestures. The recurrent neural network (RNN) with a gated recurrent unit (GRU) memory cell was utilized as a gestures classifier. A set of 27 gestures was collected from a group of volunteers. The 27 000 sequences obtained were divided into training, validation, and test subsets....
-
Influence of technological conditions on optical properties and morphology of spin-coated PPI thin films
PublicationPurpose: The aim of this paper is to show technical and chemical parameters influence on opticalproperties and morphology of poly (1,4-phenylenemethylenenitrilo- 1,4-phenylenenitrilomethylene) (PPI)thin films prepared by spin-coating methodDesign/methodology/approach: PPI thin films were prepared by spin-coating method with variousspinning rates and molar concentrations. The monomers, terephthal aledehyde (TPA) and p-phenylenediamine(PPDA),...
-
Measurements of the optical and thermal properties of the 2D black phosphorus coating
PublicationBlack phosphorus is a 2D material, which properties are still being discovered. In this paper, the sensitivity to the temperature of a few-layer black phosphorus coating deposited, on the surface of a microsphere-based fiber-optic sensor, by a dip-coating method is presented. The coating was investigated after 2, 3, and 5 deposition cycles and during temperature growth from 50 °C to 300 °C in an interferometric setup. The intensity...
-
Comment on "Quantitative comparison of analysis methods for spectroscopic optical coherence tomography"
PublicationIn a recent paper by Bosschaart et al. [Biomed. Opt. Express 4, 2570 (2013)] various algorithms of time-frequency signal analysis have been tested for their performance in blood analysis with spectroscopic optical coherence tomography sOCT). The measurement of hemoglobin concentration and oxygen saturation based on blood absorption spectra have been considered. Short time Fourier transform (STFT) was found as the best method for...
-
Structural and optical investigations of sol-gel derived lithium titanate thin films
Publicationin this paper structural and optical studies of lithium titanate (lto) thin films are presented. nanocrystalline thin films with 800 nm thickness were prepared by sol-gel method. to examine the influence of the annealing time on as-prepared films crystallization, the coatings were heated at 550 °c for 10, 20 and 80 h. structure of manufactured thin films was investigated using x-ray diffraction (xrd). the most visible lithium titanate...
-
Investigation of energy deposition and its optical imaging in polymer gel dosimeters
PublicationThis following chapter describes methods for verifying the absorbed dose during radiotherapy. Special attention is paid to the method using polymer-gel dosimeters, the dose reading of which is performed by means of Laser Computed Tomography. The chapter also includes considerations on alternative solutions for dosimetric measurements and various types of radiotherapy and their pros and cons. In addition, both the methods of structural...
-
Nucleation and growth of CVD diamond on fused silica optical fibres with titanium dioxide interlayer
PublicationNucleation and growth processes of thin diamond films on fused silica optical fibres have been investigated. Fibres were coated with diamond film using microwave plasma enhanced chemical vapour deposition (µPE CVD) system. Since the growth of diamond on the fused silica glass requires high seeding density, two types of glass pre-treatment were applied: titanium dioxide (TiO2) interlayer deposition and sonication in nanodiamond...
-
The equations for interactions of polarization modes in optical fibres including the kerr effect
PublicationWe have derived coupled nonlinear Schro¨ dinger equations (CNLSE) for arbitrary polarized light propagation in a single-mode fibre employing electromagnetic field complete description. We used a basis of transverse eigenmodes with appropriate projecting; hence, the nonlinear constants depend on the waveguide geometry. Accounting for a weak nonlinearity, which is connected to the Kerr effect, we have given explicit expressions for...
-
Optical activity and electro-optic effect of l-arginine doped KDP single crystals
PublicationWe have used the modified polarimetric methods to study optical activity (OA) in the potassium dihydrogenphosphate (KDP) crystals doped with 0.7, 1.4 and 3.8 wt% L-arginine (L-arg) amino acid. Crystals were grown by the temperature reduction method. Small changes of the absolute eigen waves ellipticity and OA values in doped crystals were noted. We have experimentally determined the signs of OA in the [1 00] and [01 0] directions...
-
Improved surface coverage of an optical fibre with nanocrystalline diamond by the application of dip-coating seeding
PublicationGrowth processes of diamond thin films on the fused silica optical fibres (10 cm in length) were investigated at various temperatures. Fused silica pre-treatment by dip-coating in a dispersion consisting of detonation nanodiamond (DND) in dimethyl sulfoxide (DMSO) with polyvinyl alcohol (PVA) was applied. Nanocrystalline diamond (NCD) films were deposited on the fibres using the microwave plasma assisted chemical vapour deposition...
-
Advanced Monte Carlo simulator of the polarization-sensitive optical coherence tomography systems
PublicationSimulations of the optical coherence tomography (OCT) systems using the Monte Carlo method is a widely explored research area. However, there are several difficulties that need to be overcome in order to properly model the OCT imaging with the Monte Carlo algorithm. First of all, the temporal and the spatial coherence of the scattered light need to be considered, since OCT is based on the interference phenomenon. For the same reason,...
-
Optical and electrical properties of ultrathin transparent nanocrystalline boron-doped diamond electrodes
PublicationThe optical properties of ultrathin (less than 100 nm) boron-doped nanocrystalline diamond (B-NCD) film were investigated in a wavelength range of 200 ÷ 20000 nm. The B-NCD refractive index showed values close to that of monocrystalline diamond (n = 2.45) in a broad wavelength range (450 ÷ 4000 nm). A transmittance up to 70% and the average film thickness of 70 nm were achieved. A special cone-shaped shim was used in the deposition...
-
Low-coherence method of hematocrit measurement
PublicationDuring the last thirty years low-coherence measurement methods have gained popularity because of their unique advantages. Low-coherence interferometry, low-coherence reflectometry and low-coherence optical tomography offer resolution and dynamic range of measurement at the range of classical optical techniques. Moreover, they enable measurements of the absolute value of the optical path differences, which is still an unsolved problem...
-
Monte-Carlo Modeling of Optical Sensors for Postoperative Free Flap Monitoring
PublicationThis work aims to develop a numerical tissue model and implement software to simulate photon propagation using the Monte Carlo method to determine design guidelines for a physical measurement system. C++ was used for the simulation program, and Python as a programming environment to create an interface that allows the user to customize individual simulation elements, allowing for increased accuracy and flexibility when simulating...
-
Monte-Carlo Modeling of Optical Sensors for Postoperative Free Flap Monitoring
PublicationThis work aims to develop a numerical tissue model and implement software to simulate photon propagation using the Monte Carlo method to determine design guidelines for a physical measurement system. C++ was used for the simulation program, and Python as a programming environment to create an interface that allows the user to customize individual simulation elements, allowing for increased accuracy and flexibility when simulating...
-
Optical properties of the chemotherapy drugs used in the central nervous system lymphoma therapy: monitoring drug delivery
PublicationOur aim is to optically monitor the delivery of the chemotherapy drugs for brain tumours, particularly used in the central nervous system (CNS) lymphoma therapy. In vivo monitoring would help to optimize the treatment and avoiding unnecessary medications. Moreover, it would be beneficial to be able to measure which of the multi-regimen drugs actually do penetrate and how well into the brain tissue. There exist several potential...
-
Role of nitrogen in evolution of sp2/sp3 bonding and optical band gap in hydrogenated carbon nitride
PublicationDrastic changes in the bonding are found in amorphous hydrogenated carbon nitride (a-CNx:H) film as a function of nitrogen concentration (or N/C ratio). The total C-sp3 fraction and hardness shows a sharp decrease (at N/C = 0.40) whereas optical band gap and resistivity shows a gradual increase as nitrogen concentration increases from 0.07 to 0.58. Raman spectrum of a-CNx:H film is fitted with both Gaussian (integrated intensity...
-
Tuning of the plasmon resonance location in Au nanostructures coated with a ultrathin film of Al2O3 – Optical measurements and FDTD simulations
PublicationThe Au nanostructures have been coated with an ultra-thin films of amorphous aluminium oxide. Optical absorption spectra show the influence of the thickness of Al2O3 on plasmon resonance wavelength. The observed red-shift of the resonance location with the increase of the thickness of the Al2O3 film, can be explained by the change in the dielectric function of this film. It allows control of the optical spectra of the coated particles....
-
Optical Emission Spectroscopy of Microwave (915 MHz) Plasma in Atmospheric Pressure Nitrogen with Addition of Ethanol Vapour
PublicationIn this paper results of optical emission spectroscopic study of microwave 915 MHz plasma in atmospheric pressure nitrogen with an addition of ethanol vapour are presented. The plasma was generated in waveguide- -supplied cylinder-type nozzleless microwave plasma source. The aim of research was to determine the rotational Trot and vibrational Tvib temperatures of CN and C2. A method called bubbling was employed to introduce alcohol (ethanol)...
-
Optical investigations of electrochemical processes using a long-period fiber grating functionalized by indium tin oxide
Publicationhe growing needs for fast and reliable sensing devices stimulate development of new technological solutions. In this work a new multi-domain sensing method is demonstrated where optical sensing device has been applied to enhance amount of data received during electrochemical analysis. Thin, optically transparent, high-refractive-index, and electrically conductive indium tin oxide (ITO) film was deposited using magnetron sputtering...
-
Nano-particle doped hydroxyapatite material evaluation using Spectroscopic Polarization Sensitive Optical Coherence Tomography
PublicationBio-ceramics such as hydroxyapatite (HAp) are widely used materials in medical applications, especially as an interface between implants and living tissues. There are many ways of creating structures from HAp like electrochemical assisted deposition, biomimetic, electrophoresis, pulsed laser deposition or sol-gel processing. Our research is based on analyzing the parameters of the sol-gel method for creating thin layers of HAp....
-
Volumetric incorporation of NV diamond emitters in nanostructured F2 glass magneto-optical fiber probes
PublicationIntegration of optically-active diamond particles with glass fibers is a powerful method of scaling diamond's magnetic sensing functionality. We propose a novel approach for the integration of diamond particles containing nitrogen-vacancy centers directly into the fiber core. The core is fabricated by stacking the preform from 790 soft glass canes, drawn from a single rod dip-coated with submicron diamond particles suspended in...
-
Does the low optical band gap of yellow Bi3YO6 guarantee the photocatalytical activity under visible light illumination?
PublicationBi3YO6, which is known as an ionic conductor, was tested here as an electrode and photoanode in contact with aqueous electrolytes. Bi3YO6 was deposited onto the Pt substrate and the such prepared electrode was polarized in various aqueous electrolytes. The optical energy band gap of the material equal to 1.89 eV was determined using the Kubelka-Munk function resulting from the UV-Vis spectrum (allowed indirect transition) and also...
-
Optical and electrical properties of boron doped diamond thin conductive films deposited on fused silica glass substrates
PublicationThis paper presents boron-doped diamond (BDD) film as a conductive coating for optical and electronic purposes. Seeding and growth processes of thin diamond films on fused silica have been investigated. Growth processes of thin diamond films on fused silica were investigated at various boron doping level and methane admixture. Two step pre-treatment procedure of fused silica substrate was applied to achieve high seeding density....
-
Optical profilometer
PublicationThe profilometry plays a huge role in the most fields of science and technology. It allows to measure the profile of the surface with high-resolution. This technique is used in the fields like optic, electronic, medicine, automotive, and much more. The aim of the current work was to design and build optical profilometer based on the interference phenomena. The developed device has been working with He-Ne laser (632.8 nm). The optical...
-
Low-coherence photonic method of electrochemical processes monitoring
PublicationWe present an advanced multimodality characterization platform for simultaneous optical and electrochemical measurements of ferrocyanides. Specifcally, we combined a fber-optic Fabry– Perot interferometer with a three-electrode electrochemical setup to demonstrate a proof-ofprinciple of this hybrid characterization approach, and obtained feasibility data in its monitoring of electrochemical reactions in a boron-doped diamond flm...
-
Efficient method for octahedral NH2-MIL-125 (Ti) synthesis: Fast and mild conditions
PublicationA new hot injection method for preparing octahedral NH2-MIL-125 (Ti) was developed. This method is six times faster and conducted under milder conditions, i.e., at 120°C in a flask, and exhibits higher crystal formation efficiency than the commonly used solvothermal method while maintaining comparable structural, optical, and photocatalytic properties.
-
Liquid crystalline optical components for application in optical sensing
PublicationW artykule opisano proces wytwarzania pryzmatów Wollastona na bazie roztworu ciekłokrystalicznego ZLI-1957 i płytek falowych na bazie prekursora polimeru ciekłokrystalicznego RMS03-001. Przedstawiono uzyskane parametry optyczne elementów pod kątem ich potencjalnych aplikacji
-
Coherent-wave Monte Carlo method for simulating light propagation in tissue
PublicationSimulating propagation and scattering of coherent light in turbid media, such as biological tissues, is a complex problem. Numerical methods for solving Helmholtz or wave equation (e.g. finite-difference or finite-element methods) require large amount of computer memory and long computation time. This makes them impractical for simulating laser beam propagation into deep layers of tissue. Other group of methods, based on radiative...
-
A method for counting people attending large public events
PublicationThe algorithm for people counting in crowded scenes, based on the idea of virtual gate which uses optical flow method is presented. The concept and practical application of the developed algorithm under real conditions is depicted. The aim of the work is to estimate the number of people passing through entrances of a large sport hall. The most challenging problem was the unpredicted behavior of people while entering the building....
-
A high-accuracy complex-phase method of simulating X-ray propagation through a multi-lens system
PublicationThe propagation of X-ray waves through an optical system consisting of many X-ray refractive lenses is considered. For solving the problem for an electromagnetic wave, a finite-difference method is applied. The error of simulation is analytically estimated and investigated. It was found that a very detailed difference grid is required for reliable and accurate calculations of the propagation of X-ray waves through a multi-lens...
-
Nanocrystalline diamond microelectrode on fused silica optical fibers for electrochemical and optical sensing
PublicationFabrication process of thin boron-doped nanocrystalline diamond (B-NCD) microelectrode on fused silica single mode optical fiber has been investigated. The B-NCD films were deposited on the fibers using Microwave Plasma Assisted Chemical Vapor Deposition (MW PA CVD) at glass substrate temperature of 475 ºC. We have obtained homogenous, continuous and polycrystalline surface morphology with the mean grain size in the range of 100-250...
-
Reliability and Validity of Optoelectronic Method for Biophotonical Measurements
PublicationReliability and validity of measurements is of utmost importance when assessing measuring capability of instruments developed for research. In order to perform an experiment which is legitimate, used instruments must be both reliable and valid. Reliability estimates the degree of precision of measurement, the extent to which a measurement is internally consistent. Validity is the usefulness of an instrument to perform accurate...
-
The new version of contact-less method for localisation of catenary contact wire – theoretical assumption
PublicationThis article presents the theoretical basic of a new version of contact-less method for localising the catenary contact wires, using the advanced video techniques and image analysis. So far, contact line diagnostic systems exploited nowadays uses the contact measuring methods with special design current collector. This solutions make it impossible to measure the contact line geometry in a static way. The proposed measurement method...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublicationCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
Topological extraordinary optical transmission
PublicationΤhe incumbent technology for bringing light to the nanoscale, the near-field scanning optical microscope, has notoriously small throughput efficiencies of the order of 10^4-10^5 or less. We report on a broadband, topological, unidirectionally guiding structure, not requiring adiabatic tapering and, in principle, enabling near-perfect (∼100%) optical transmission through an unstructured single arbitrarily subdiffraction slit at...
-
Protection in elastic optical networks
PublicationIn this article, we analyze gains resulting from the use of EON architectures with special focus on transportation of cloud-ready and content-oriented traffic in the context of network resilience. EONs are a promising approach for future optical transport networks and, apart from improving the network spectral efficiency, bring such new capabilities as squeezed protection, which reduces resource requirements in failure scenarios....
-
Annealing of indium tin oxide (ITO) coated optical fibers for optical and electrochemical sensing purposes
PublicationGlass and fiber structures with Indium Tin Oxide (ITO) coating were subjected to annealing in order to identify impact of the thermal treatment on their optical and electrochemical properties. It is shown that the annealing process significantly modifies optical properties and thickness of the films, which are crucial for performance of optical fiber sensors. Moreover, it visibly improves electrochemical activity of ITO on glass...
-
Exotic Optical Fibres
Publication -
Special Optical Fibres
Publication -
Mosaic Optical Fibers
Publication -
Uncertainty of Postmortem Time Estimation Based on Potassium Ion Determination in Vitreous Humor Using Potentiometric Ion-Selective Electrode and Microwave-Induced Plasma with Optical Emission Spectrometry Methods
PublicationThere is a need for a reliable and independent evaluation and confirmation of the post-mortem interval (PMI) based on objective factors other than only postmortem changes or temperature measurements. Estimating the PMI by examining the concentration of potassium ions in the vitreous humor (VH) has a tradition in forensic toxicology dating back to the mid-20th century. So far, the methods for determining the presence of potassium...
-
Electro-optical transducer based on indium-tin-oxide-coated optical fiber for analysis of ionized media
PublicationThe paper introduces a concept of an optical fiber based electro-optical transducer for monitoring of ionized media, such as low-temperature plasma. It utilizes optical fiber with a section of a core coated with tailored indium tin oxide (ITO) thin film and thus combines the optical phenomena of lossy-mode resonance (LMR) with the electrostatic probe. ITO is an optically transparent and electrically conductive material and if its...
-
Method for universal detection of two-photon polarization entanglement
PublicationDetecting and quantifying quantum entanglement of a given unknown state poses problems that are fundamentally important for quantum information processing. Surprisingly, no direct (i.e., without quantum tomography) universal experimental implementation of a necessary and sufficient test of entanglement has been designed even for a general two-qubit state. Here we propose an experimental method for detecting a collective universal...
-
Experimental results of full scattering profile from finger tissue-like phantom
PublicationHuman tissue is one of the most complex optical media since it is turbid and nonhomogeneous. We suggest a new optical method for sensing physiological tissue state, based on the collection of the ejected light at all exit angles, to receive the full scattering profile. We built a unique set-up for noninvasive encircled measurement. We use a laser, a photodetector and finger tissues-mimicking phantoms presenting different optical...
-
Tailoring the optical parameters of optical fiber interferometer with dedicated boron-doped nanocrystalline diamond thin film
PublicationOptical fiber interferometer using nanocrystalline boron-doped diamond film was investigated. The diamond films were deposited on glass plates using a Microwave Plasma-Enhanced Chemical Vapour Deposition (μPE CVD) sys-tem. The growth time was 3h, with boron doping level of 10 000 ppm producing films (B-NCD-10) of thickness ~ 200 nm. The presence of boron atoms in the diamond film is evident in Raman spectrum as peaks at 1212 cm-1...
-
Optical monitoring of electrochemical processes with ITO-based lossy-mode resonance optical fiber sensor applied as an electrode
PublicationIn this work we discuss the application of optical fiber sensors based on lossy-mode resonance (LMR) phenomenon for real-time optical monitoring of electrochemical processes. The sensors were obtained by a reactive high power impulse magnetron sputtering of indium tin oxide (ITO) on a 2.5 cm-long core of polymer-clad silica fibers. The LMR effect made monitoring of changes in optical properties of both ITO and its surrounding medium...
-
Measurement of selected characteristics of low-coherence optical signal sources for optical coherence tomography
Publication