Filters
total: 325
Search results for: NATURAL COMPOSITES
-
Comparative Analysis of the Coffee and Cocoa Industry By-Products on the Performance of Polyethylene-Based Composites
PublicationThe application of plant-based by-products from the food industry as minimally processed functional fillers for polymeric composites is an increasingly popular trend among researchers and manufacturers. While minimizing the preprocessing of lignocellulosic fillers leads to an increase in the sustainability of the overall composite and a decrease of the carbon footprint, filler modification is usually indispensable to obtaining...
-
Comparative Analysis of the Cofee and Cocoa Industry By‑Products on the Performance of Polyethylene‑Based Composites
PublicationThe application of plant-based by-products from the food industry as minimally processed functional fillers for polymeric composites is an increasingly popular trend among researchers and manufacturers. While minimizing the preprocessing of lignocellulosic fillers leads to an increase in the sustainability of the overall composite and a decrease of the carbon footprint, filler modification is usually indispensable to obtaining...
-
Electrode materials for electrochemical capacitors based on poly(3,4-ethylenedioxythiophene) and functionalized multi-walled carbon nanotubes characterized in aqueous and aprotic electrolytes
PublicationWithin this work, we report a facile one-stage synthesis of nanocomposites based on functionalized carbon nanotubes (CNTs) and electroactive polymer poly(3,4-ethylenedioxythiophene). Three different composites are investigated as potential electrode materials for the electrochemical capacitors. Two of the composites contain carbon nanotubes (ox-CNTs), functionalized by acid oxidation process (65% HNO3, 120 °C). The third composite...
-
Planetary roller extruders in the sustainable development of polymer blends and composites – Past, present and future
PublicationScrew extruders as continuous flow reactors allow the synthesis of new polymers, preparation of polymer blends and composites, and modification or functionalization of commercially available polymers. Literature data shows that the twin screw extrusion is the most popular solution used for this purpose. In contrast, the number of scientific papers on alternative methods, such as multi-screw extruders, is somewhat limited. This...
-
Experimental and Numerical Study on Mechanical Characteristics of Aluminum/Glass Fiber Composite Laminates
PublicationThe fiber-metal composites made of aluminum sheets and glass fibers reinforced with a polyester resin as the matrix were studied. The composites were prepared by hand lay-up method. Some aspects of manufacturing affecting the composite behavior were considered. In particular, the influences of the arrangement of layers and their number on the mechanical and physical properties of composites with ten different compositions were...
-
Insights into Compatibilization of Poly(ε-caprolactone)-based Biocomposites with Diisocyanates as Modifiers of Cellulose Fillers
PublicationThis study aimed to analyze the impact of cellulose fillers’ modification with diisocyanates on the performance of composites based on the poly(ε-caprolactone) (PCL) matrix. Four most commonly used diisocyantes (isophorone, hexamethylene, toluene, and methylene diphenyl) were applied as modifiers of cellulose fillers (5 and 15 wt% per mass of filler). Modified fillers were introduced in the amount of 30 wt% into the PCL matrix....
-
Investigation of Wood Flour Size, Aspect Ratios, and Injection Molding Temperature on Mechanical Properties of Wood Flour/Polyethylene Composites
PublicationIn the present research, wood flour reinforced polyethylene polymer composites with a coupling agent were prepared by injection molding. The effects of wood flour size, aspect ratios, and mold injection temperature on the composites’ mechanical properties were investigated. For the preparation of the polymer composites, five different formulations were created. The mechanical properties including tensile strength and the modulus,...
-
Interactions between components of SrTi0.98 Nb0.02O3-δ-YSZ and SrTi0.98 Nb0.02O3-δ -CeO2 composites
PublicationComposites consisting of SrTiO3-based perovskite and either yttria-stabilized zirconia or ceria were investigated. The mechanical compatibility and possible inter-diffusion between phases were characterized by scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. A gradual disappearance of Ce-containing phases with an increase in the temperature of reduction in hydrogen was noticed. Moreover,...
-
Composite Materials Based on Polymer-Derived SiCN Ceramic and Disordered Hard Carbons as Anodes for Lithium-Ion Batteries
PublicationNew composite materials based on polymer-derived SiCN ceramics and hard carbons were studied in view of its application as anodes for lithium-ion batteries. Two kinds of composites were prepared by pyrolysis of the preceramic polysilazane (HTT1800, Clariant) at 1000 °C in Ar atmosphere mixed with hard carbons derived from potato starch (HC_PS) or with a hard carbon precursor, namely potato starch (PS), denoted as HTT/HC_PS and...
-
An investigation of microstructural basis for corrosion behavior of Al-CNT composites fabricated by SPS
PublicationIn this research effect of the addition of multi-wall carbon nanotubes (MWCNTs) as additive powder on microstructure and corrosion behavior of fabricated Al-CNT composites was studied. The aluminum powder and CNTs were mixed with high energy planetary ball-mill. It is observed that by increasing milling time, the uniformity of CNTs on aluminum matrix and consequently corrosion resistance of Al-CNT composite is increased. On the...
-
Insights into Stoichiometry Adjustments Governing the Performance of Flexible Foamed Polyurethane/Ground Tire Rubber Composites
PublicationPolyurethanes (PU) are widely applied in the industry due to their tunable performance adjusted by changes in the isocyanate index—stoichiometric balance between isocyanate and hydroxyl groups. This balance is affected by the incorporation of modifiers of fillers into the PU matrix and is especially crucial for PU foams due to the additional role of isocyanates—foaming of the material. Despite the awareness of the issue underlined...
-
One More Step Towards a Circular Economy for Thermal Insulation Materials—Development of Composites Highly Filled with Waste Polyurethane (PU) Foam for Potential Use in the Building Industry
PublicationThe rapid development of the building sector has created increased demand for novel materials and technologies, while on the other hand resulting in the generation of a severe amount of waste materials. Among these are polyurethane (PU) foams, which are commonly applied as thermal insulation materials. Their management is a serious industrial problem, due to, for example, their complex chemical composition. Although some chemical...
-
Mater-Bi/Brewers’ Spent Grain Biocomposites—Novel Approach to Plant-Based Waste Filler Treatment by Highly Efficient Thermomechanical and Chemical Methods
PublicationThermoplastic starch (TPS) is a homogenous material prepared from native starch and water or other plasticizers subjected to mixing at a temperature exceeding starch gelatinization temperature. It shows major drawbacks like high moisture sensitivity, poor mechanical properties, and thermal stability. To overcome these drawbacks without significant cost increase, TPS could be blended with bio-based or biodegradable polymers and...
-
Investigation into the Effect of Spinel Pigments on the Photostability and Combustion Properties of Ethylene-Norbornene Copolymer
PublicationMulticolor ethylene-norbornene (EN) composites filled with three different spinel pigments (Cobalt Green-PG50, Zinc Iron Yellow-PY 119, Praseodym Yellow-PY159) were prepared by melt mixing and characterized in terms of their stability under destructive environmental conditions. The EN films were subjected to accelerated aging by ultraviolet (UV) photooxidation for 300 h, 600 h, or 900 h. The mechanical performance of the EN composites...
-
Rotational molding of polylactide (PLA) composites filled with copper slag as a waste filler from metallurgical industry
PublicationThe research work carried out so far indicates the ever wider possibilities and demand for shaping composite products in the rotational molding technology. This trend was the main reason to use waste-based filler from the metallurgical process as a filler for manufacturing polylactide (PLA)-based remolded composites. Copper slag (CS) was introduced in the single-step processing method to PLA matrix at 5, 10, 20, and 35 wt%. The...
-
Carboxy derivative of dioxydiphenylpropane diglycydyl ether monomethacrylate as an addtive for composites
PublicationThe modifier of composites was used in the presence of polyetylene polyamine. Physico-mechanical properties and chemical stability of coatings thus obtained were analyzed.
-
Structures of diamond tool composites
PublicationPresented are structures and examples of applications of diamond tool composites. They are widely used as cutting tools, bonded abrasive tools and dressing tools.
-
Microcracking monitoring and damage detection of graphene nanoplatelets-cement composites based on acoustic emission technology
PublicationThis study aims to identify the micro-cracking pattern and structural applications of cement composites replaced with 0 wt%, 0.04 wt%, and 0.08 wt% contents of graphene nanoplatelets (GNPs) over cement weight through acoustic emission (AE) monitoring under mechanical degradation. The ultraviolet-visible spectroscopy (UV–vis) results showed that at 60 min sonication period, GNP-4 showed maximum absorbance rate of 16.15% compared...
-
Water Footprint Assessment of Selected Polymers, Polymer Blends, Composites, and Biocomposites for Industrial Application
PublicationThis paper presents a water footprint assessment of polymers, polymer blends, composites, and biocomposites based on a standardized EUR-pallet case study. The water footprint analysis is based on life cycle assessment (LCA). The study investigates six variants of EUR-pallet production depending on the materials used. The system boundary included the production of each material and the injection molding to obtain a standardized...
-
Waste tire rubber as low-cost and environmentally-friendly modifier in thermoset polymers – a review
PublicationNowadays, waste tire rubber (WTR) management is a growing and serious problem. Therefore, research works focused on the development of cost-effective and environmentally-friendly methods of WTR recycling are fully justified. Incorporation of WTR into polymer matrices and composite materials attracts much attention, because this approach allows sustainable development of industrially applicable waste tires recycling technologies....
-
The influence of rubber recyclate morphology on the properties of rubber-asphalt composite
PublicationIn the paper wastes, mostly in the form of used tires, were analyzed. One of the methods of waste tires application use them as a modifier of asphalt. However, the properties of rubber-asphalt composites depend on the morphology of waste tiregranulate and kind of tire recycled (car/truck). In this chapter, the influence of grinding methods of waste tire on the prop¬erties of rubber-asphalt composites were studied. SEM analysis...
-
The Impact of Hybrid Flame Retardant Compositions on the Performance of Foamed Flexible Polyurethane/Ground Tire Rubber Composites
PublicationCurrent sustainability-oriented trends affect polyurethane (PU) materials and stimulate the incorporation of recycled or waste-based materials as fillers. Ground tire rubber (GTR) poses as an auspicious candidate due to the excellent performance of car tires. Despite the benefits related to the mechanical performance, it contributes to the increasing flammability of the resulting composites. Herein, presented work assessed the...
-
Modulation of dielectric properties in low-loss polypropylene-based composites at GHz frequencies: theory and experiment
PublicationPolymer composites with high dielectric constant and low loss tangent are highly regarded as substrates for modern high-speed electronics. In this work, we analyze the high-frequency dielectric properties of two types of composites based on polypropylene infused with high-dielectric-constant microparticles. Two types of fillers are used: commercial ceramics or titanium oxide ( TiO2) with different concentrations. The key observation...
-
On the Correlation of Lignocellulosic Filler Composition with the Performance Properties of Poly(ε-Caprolactone) Based Biocomposites
PublicationIn this work, three types of agricultural waste: olive stones (OS), date seed (DS) and wheat bran (WB) were applied as potential lignocellulosic fillers in poly(ε-caprolactone) (PCL) based biocomposites. Differences in composites’ performance were related to the higher content of proteins, noted for WB comparing to other fillers applied, which enhanced plasticization of PCL matrix. The mechanical properties of biocomposites were...
-
Chemical surface etching methods for ground tire rubber as sustainable approach for environmentally-friendly composites development– a review
PublicationGround tire rubber (GTR) has been used as a sustainable low-cost modifier in various composites. However, due to the hydrophobic nature of GTR, it is in compatible with most matrices and results in deterioration in both mechanical and physical properties of composites. This necessitates pre-modification of the powdered rubber to improve the interfacial bonding at the rubber-matric interface. The most common GTR modification research...
-
Fabrication of exfoliated graphite reinforced silicone rubber composites - Mechanical, tribological and dielectric properties
PublicationThe effect of exfoliated graphite (EG) on the mechanical, tribological and dielectric properties of the silicone rubber (QM) composites has been systematically investigated and analysed. Morphological analysis of the composites helps to understand the interfacial interaction between the filler and the rubber matrix as well as wear mechanism respectively. An enhancement in the mechanical, tribological and dielectric properties was...
-
Fabrication of exfoliated graphite reinforced silicone rubber composites - Mechanical, tribological and dielectric properties
PublicationThe effect of exfoliated graphite (EG) on the mechanical, tribological and dielectric properties of the silicone rubber (QM) composites has been systematically investigated and analysed. Morphological analysis of the composites helps to understand the interfacial interaction between the filler and the rubber matrix as well as wear mechanism respectively. An enhancement in the mechanical, tribological and dielectric properties was...
-
Structure and thermoelectric properties of bismuth telluride—Carbon composites
PublicationCarbon nanotubes and amorphous carbon have been introduced into a bismuth telluride matrix (0.15 and 0.30 wt.% ratio) to investigate the influence of the carbon on the composite’s thermoelectric properties. Composites with well-dispersed additives have been obtained by sonication and ball-milling methodology. Carbon nanotubes and an amorphous carbon addition led to a decrease in electric conductivity from 1120 S/cm to 77 S/cm....
-
Effects of Basalt and Carbon Fillers on Fire Hazard, Thermal, and Mechanical Properties of EPDM Rubber Composites
PublicationDue to growing restrictions on the use of halogenated flame retardant compounds, there is great research interest in the development of fillers that do not emit toxic compounds during thermal decomposition. Polymeric composite materials with reduced flammability are increasingly in demand. Here, we demonstrate that unmodified graphene and carbon nanotubes as well as basalt fibers or flakes can act as effective flame retardants...
-
The impact of filler thermomechanical modifications on static and dynamic mechanical performance of flexible foamed polyurethane/ground tire rubber/zinc borate composites
PublicationThe rapid development of the automotive industry is very beneficial to many aspects of human life, but it is also a very significant environmental burden. The most straightforward impact is related to the generation of exhaust, but the management of post-consumer car parts is also a major challenge. Among them, waste tires are very burdensome due to their enormous numbers. Therefore, it is essential to develop novel, environmentally...
-
Recent Advances in Development of Waste-Based Polymer Materials: A Review
PublicationLimited petroleum sources, suitable law regulations, and higher awareness within society has caused sustainable development of manufacturing and recycling of polymer blends and composites to be gaining increasing attention. This work aims to report recent advances in the manufacturing of environmentally friendly and low-cost polymer materials based on post-production and postconsumer wastes. Sustainable development of three groups...
-
Investigation on Mode I Fracture Behavior of Hybrid Fiber-Reinforced Geopolymer Composites
PublicationRecent reports in the literature have shown that fber-reinforced geopolymer composites (FRGC) made with monofbers exhibit a signifcant enhancement in fracture energy. However, many aspects of the fracture performance of hybrid fberreinforced geopolymer composites (HFRGC) remain largely unexploited, and these are predominant for the structures. For the frst time, the mode I fracture energy of HFRGC is investigated. The mode I behavior...
-
Micro-cracking pattern recognition of hybrid CNTs/GNPs cement pastes under three-point bending loading using acoustic emission technique
PublicationThe generation of microcracks has an important influence on the behaviour of concrete structures. In this study, the acoustic emission (AE) technique was used to investigate the fracture phenomena and micro-cracking behavior of hybrid carbon nanotubes (CNTs, the 1-D allotrope of carbon atoms) and graphene nanoplatelets (GNPs, 2D monolayer of sp2-hybridized carbon atoms), cement composites under three-point bending loading. In...
-
The Impact of Isocyanate Index and Filler Functionalities on the Performance of Flexible Foamed Polyurethane/Ground Tire Rubber Composites
PublicationThe structure and performance of polyurethane (PU) foams are strongly driven by the stoichiometry of the polyaddition reaction, quantitatively described by the isocyanate index. It determines the balance between isocyanate and hydroxyl groups in the reacting system and is affected by the introduction of additional functionalities originated, e.g., from applied fillers. Nevertheless, this issue is hardly taken into account in research...
-
Biowaste chicken eggshell powder as a potential cure modifier for epoxy/anhydride systems: competitiveness with terpolymer-modified calcium carbonate at low loading levels
PublicationBiowaste chicken eggshell (ES) powder was applied as a potential cure modifier in epoxy/anhydride systems. Cure behaviour and kinetics of composites filled with very low content (0.1 wt% based on epoxy resin) of ES, calcium carbonate (CaCO3), and terpolymer-modified fillers, mES and mCaCO3, were discussed comparatively. Surface analysis was performed by X-ray photoelectron spectroscopy. Cure kinetics was investigated by differential...
-
Comparative Study of the Reinforcement Type Effect on the Thermomechanical Properties and Burning of Epoxy-Based Composites
PublicationAramid (AF), glass (GF), carbon (CF), basalt (BF), and flax (FF) fibers in the form of fabrics were used to produce the composites by hand-lay up method. The use of fabrics of similar grammage for composites’ manufacturing allowed for a comprehensive comparison of the properties of the final products. The most important task was to prepare a complex setup of mechanical and thermomechanical properties, supplemented by fire behavior...
-
Perovskite-type KTaO3–reduced graphene oxide hybrid with improved visible light photocatalytic activity
PublicationNovel rGO–KTaO3 composites with various graphene content were successfully synthesized using a facile solvothermal method which allowed both the reduction of graphene oxide and loading of KTaO3 nanocubes on the graphene sheets. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX), Fourier...
-
Ground lemon and stevia leaves as renewable functional fillers with antioxidant activity for high-density polyethylene composites
PublicationThe development of new sustainable material solutions in the processing of thermoplastic polymers concerns both the application of biopolymers and the use of valorized plant derivatives as fillers and modifiers of petrochemical polymers. Herein, the possibility of using unprocessed raw parts of two commonly used in the food industry leaves, i.e., lemon (LL) and stevia (ST), as active and functional fillers for high-density polyethylene...
-
Material Design and Optimisation of Electrochemical Li-Ion Storage Properties of Ternary Silicon Oxycarbide/Graphite/Tin Nanocomposites
PublicationIn this work, we present the characterization and electrochemical performance of various ternary silicon oxycarbide/graphite/tin (SiOC/C/Sn) nanocomposites as anodes for lithium-ion batteries. In binary SiOC/Sn composites, tin nanoparticles may be produced in situ via carbothermal reduction of SnO2 to metallic Sn, which consumes free carbon from the SiOC ceramic phase, thereby limiting the carbon content in the final ceramic nanocomposite....
-
Synthesis and characterization of biopolyols through biomass liquefaction of wood shavings and their application in the preparation of polyurethane wood composites
PublicationThe sustainability of production systems in wood processing, wood industry, and wooden waste disposal is an important issue for European industry and society. Proper development of products based on renewable wood resources gives an opportunity to provide materials with long-term environmental, social, and economic sustainability. This study aims to establish a new way of forestry and agricultural waste materials utilization by...
-
Synergistic effect of MWCNTs and MA-g-PP on the thermal and viscoelastic properties of immiscible PTT/PP blends
PublicationThe properties of immiscible blends of PTT and PP were modified by grafting and nanoparticle inclusion. The observed synergistic effect of MWCNTs and MA-g-PP on the thermal and viscoelastic properties of PTT/PP blends was studied in detail and the properties of the composites were compared with those of ungrafted PP.
-
Design of dimensionally stable composites using efficient global optimization method
PublicationDimensionally stable material design is an important issue for space structures such as space laser communication systems, telescopes, and satellites. Suitably designed composite materials for this purpose can meet the functional and structural requirements. In this paper, it is aimed to design the dimensionally stable laminated composites by using efficient global optimization method. For this purpose, the composite plate optimization...
-
DEGRADATION OF GFRP MARINE LAMINATES WITH NANO PARTICLE MODIFIED COATINGS
PublicationWater absorption and surface blistering behaviour was studied for polyester-matrix laminates with SiO2 nanoparticle reinforced gel coats. Accelerated water immersion tests at 37°C showed that addition of 10% nanoparticles increases blisters incubation time by ca. 50% compared to 5% and 0% nanoparticles composites.
-
Recycled rubber wastes-based polymer composites with flame retardancy and electrical conductivity: Rational design, modeling and optimization
PublicationPolymer recycling techniques experience a maturity period of design and application. Rubbers comprise a high proportion of polymer wastes, highly flammable and impossible to re-melt. Polymer composites based on ground tire rubber (GTR) and ethylene-vinyl acetate copolymer (EVA) containing carbon black (CB) (1–50 phr), with variable EVA/GTR weight composition (10/90, 25/75, 50/50, 75/25 and 90/10), and processing temperature (Low:...
-
Rubber wastes recycling for developing advanced polymer composites: A warm handshake with sustainability
PublicationRecycling and management of rubber wastes experiences an early-stage maturity in the quest for sustainable and circular materials. Up to now, solutions proposed for sustainable development of rubber wastes are limited, so that properties and performance features of recycled products are inadequate for practical applications. Herein, an experimental protocol is introduced for manufacturing semi-sustainable polymer composites based...
-
Chitosan-based nanomaterials for removal of water pollutants
PublicationThe rise of micropollutants presents a significant threat to both the environment and human well-being, requiring effective strategies for their mitigation. Chitin serves as the precursor for chitosan, composed of two monomers featuring acetamido and amino groups. Chitosan possesses several noteworthy attributes, including its ability to bind water and fat, humidity content, solubility, consistent molecular weight, and various...
-
Processing, mechanical and thermal behavior assessments of polycaprolactone/agricultural wastes biocomposites
PublicationIn this paper, brewer’s spent grain (BSG) was applied as potential lignocellulose biofiller in biocompos-ites based on polycaprolactone (PCL). The PCL/BSG biocomposites filled with varying content of biofillerswere prepared via low-temperature melt-compounding. These conditions allow limiting thermal degra-dation of used biofillers during processing. The influence of biofiller content (ranging from 25 to 200parts by weight on 100...
-
A case study on the rotomolding behavior of black tea waste and bio-based high-density polyethylene composites: Do active compounds in the filler degrade during processing?
PublicationThis study verified the possibility of using waste material from the food industry (black tea) as functional filler of rotomolded biobased high-density polyethylene-based composites. As part of the experimental work, the influence of the materials preparation, i.e., dry blending versus twin-screw extrusion, on the effectiveness of the stabilizing antioxidant effect of the black tea was analyzed. The aim of the work was to verify...
-
The Input of Nanoclays to the Synergistic Flammability Reduction in Flexible Foamed Polyurethane/Ground Tire Rubber Composites
PublicationCurrently, postulated trends and law regulations tend to direct polymer technology toward sustainability and environmentally friendly solutions. These approaches are expressed by keeping materials in a loop aimed at the circular economy and by reducing the environmental burdens related to the production and use of polymers and polymer-based materials. The application of recycled or waste-based materials often deals efficiently...
-
Influence of CeO2 and TiO2 Particles on Physicochemical Properties of Composite Nickel Coatings Electrodeposited at Ambient Temperature
PublicationThe Ni-TiO2 and Ni-CeO2 composite coatings with varying hydrophilic/hydrophobic characteristics were fabricated by the electrodeposition method from a tartrate electrolyte at ambient temperature. To meet the requirements of tight regulation by the European Chemicals Agency classifying H3BO3 as a substance of very high concern, Rochelle salt was utilized as a buffer solution instead. The novelty of this study was to implement a...