displaying 1000 best results Help
Search results for: NITROGEN-DOPED DIAMOND
-
Raman data of deuterium and hydrogen grown boron-doped diamond
Open Research DataRaman spectra were recorded at room temperature using a micro-Raman spectrometer (Invia, Renishaw) equipped with an edge filter with different excitation wavelengths and lasers: UV λ = 325 nm (HeCd), blue λ = 488 nm (Ar+), green λ = 514 nm (Ar+), and IR λ = 785 nm (IR diode) and 50× microscope objective. To avoid sample heating, the radiation power...
-
XPS data of deuterium and hydrogen grown boron-doped diamond
Open Research DataThe high-resolution C1s X-ray absorption spectra of BDD@H and BDD@D samples were measured using the facilities of the HE-SGM beamline (HE-SGM) at the BESSY II synchrotron radiation source of Helmholtz–Zentrum Berlin (HZB).[90] The measurements were carried out under ultra-high vacuum conditions: P ≈ 2×10−9 Torr at T = 300 K. The NEXAFS spectra were...
-
Optimizing Ni–Cr patterned boron-doped diamond band electrodes: Doping effects on electrochemical efficiency and posaconazole sensing performance
PublicationThere is growing interest in developing diamond electrodes with defined geometries such as, for example, micrometer-sized electrode arrays to acquire signals for electroanalysis. For electroanalytical sensing applications, it is essential to achieve precise conductive patterns on the insulating surface. This work provides a novel approach to boron-doped diamond patterning using nichrome masking for selective seeding on an oxidized...
-
Phosphorus, nitrogen and oxygen co-doped polymer-based core-shell carbon sphere for high-performance hybrid supercapacitors
Publication -
How to guide photocatalytic applications of titanium dioxide co-doped with nitrogen and carbon by modulating the production of reactive oxygen species
Publication -
Understanding the synergy between N-doped ultra-microporous carbonaceous adsorbent and nitrogen functionalities for high performance of CO2 sorption
Publication -
Efficient removal of 2,4,6-trinitrotoluene (TNT) from industrial/military wastewater using anodic oxidation on boron-doped diamond electrodes
PublicationWith growing public concern about water quality particular focus should be placed on organic micropollutants, which are harmful to the environment and people. Hence, the objective of this research is to enhance the security and resilience of water resources by developing an efficient system for reclaiming industrial/military wastewater and protecting recipients from the toxic and cancerogenic explosive compound – 2,4,6-trinitrotoluene...
-
Electrochemical determination of nitroaromatic explosives at boron-doped diamond/graphene nanowall electrodes: 2,4,6-trinitrotoluene and 2,4,6-trinitroanisole in liquid effluents
PublicationThe study is devoted to the electrochemical detection of trace explosives on boron-doped diamond/graphene nanowall electrodes (B:DGNW). The electrodes were fabricated in a one-step growth process using chemical vapour deposition without any additional modifications. The electrochemical investigations were focused on the determination of the important nitroaromatic explosive compounds, 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitroanisole...
-
Electrochemical oxidation of landfill leachate using boron-doped diamond anodes: pollution degradation rate, energy efficiency and toxicity assessment
PublicationElectrochemical oxidation (EO), due to high efficiency and small carbon footprint, is regarded as an attractive option for on-site treatment of highly contaminated wastewater. This work shows the effectiveness of EO using three boron-doped diamond electrodes (BDDs) in sustainable management of landfill leachate (LL). The effect of the applied current density (25–100 mA cm−2) and boron doping concentration (B/C ratio: 500 ppm, 10,000...
-
Electrochemical detection of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole on boron-doped diamond/graphene nanowall electrodes
PublicationWe present a promising approach to the electroanalytical detection of a specific nitroaromatic explosive in landfill leachates (LLs) that originated from a municipal solid waste plant. The paper is focused but not limited to the sensing of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole (TNBI) using differential pulse voltammetry and cyclic voltammetry. Highly electroactive nanocarbon was applied to determine low concentrations of...
-
Schottky Junction-Driven Photocatalytic Effect in Boron-Doped Diamond-Graphene Core–Shell Nanoarchitectures: An sp3/sp2 Framework for Environmental Remediation
PublicationSelf-formation of boron-doped diamond (BDD)-multilayer graphene (MLG) core–shell nanowalls (BDGNWs) via microwave plasma-enhanced chemical vapor deposition is systematically investigated. Here, the incorporation of nitrogen brings out the origin of MLG shells encapsulating the diamond core, resulting in unique sp3/sp2 hybridized frameworks. The evolution mechanism of the nanowall-like morphology with the BDD-MLG core–shell composition...
-
Optimizing Ni–Cr patterned boron-doped diamond band electrodes: Doping effects on electrochemical efficiency and posaconazole sensing performance
Publication -
Biomolecular influenza virus detection based on the electrochemical impedance spectroscopy using the nanocrystalline boron-doped diamond electrodes with covalently bound antibodies
PublicationNew rapid pathogen detection methods with improved cost-effectiveness and efficiency are currently in the focus of the scientists from all over the world. Based on the experiences from the rapid spread of the influenza virus pandemic in 2009 it is clear that the development of the system for early diagnosis of this infection is essential. The crucial stage of the treatment is the detection of the viral infection during its initial...
-
Focused ion beam-based microfabrication of boron-doped diamond single-crystal tip cantilevers for electrical and mechanical scanning probe microscopy
PublicationIn this paper, the fabrication process and electromechanical properties of novel atomic force microscopy probes utilising single-crystal boron-doped diamond are presented. The developed probes integrate scanning tips made of chemical vapour deposition-grown, freestanding diamond foil. The fabrication procedure was performed using nanomanipulation techniques combined with scanning electron microscopy and focused ion beam technologies....
-
Chemical-Assisted Mechanical Lapping of Thin Boron-Doped Diamond Films: A Fast Route Toward High Electrochemical Performance for Sensing Devices
PublicationThere is an urgent need for an effective and economically viable increase in electrochemical performance of boron-doped diamond (BDD) electrodes that are used in sensing and electrocatalytic applications. Specifically, one must take into consideration the electrode heterogeneity due to nonhomogenous boron-dopant distribution and the removal of sp2 carbon impurities saturating the electrode, without interference in material integrity....
-
Electrochemical studies of Boron-Doped Diamond enriched Laser Induced Graphene structures
Open Research DataThis dataset contains electrochemical studies aimed to evaluate the capability of the utilization of laser-induced graphene (LIG) with incorporated boron-doped diamond nanowall (BDNW) hybrid nanostructures for microsupercapacitors. Selected results from this dataset were published in Advanced Functional Materials journal: https://doi.org/10.1002/adfm.202206097
-
Characterization and properties of low-friction, multilayered Cr-doped diamond-like carbon coatings prepared by pulse biased filtered cathodic arc deposition
Publication -
Multifrequency Nanoscale Impedance Microscopy (m-NIM): A novel approach towards detection of selective and subtle modifications on the surface of polycrystalline boron-doped diamond electrodes
PublicationIn this paper, we describe the modification of Nanoscale Impedance Microscopy (NIM), namely, a combination of contact-mode atomic force microscopy with local impedance measurements. The postulated approach is based on the application of multifrequency voltage perturbation instead of standard frequency-by-frequency analysis, which among others offers more time-efficient and accurate determination of the resultant impedance spectra...
-
Multifunctional nitrogen-doped nanoporous carbons derived from metal–organic frameworks for efficient CO2 storage and high-performance lithium-ion batteries
Publication -
X-ray diffraction spectra of nitrogen-doped carbon in hybrid materials containing praseodymium oxide
Open Research DataX-ray powder diffraction patterns of samples were carried out by Philips X’Pert diffractometer, which was radiated by graphite monochromatized Cu Kα (l equal 1.540598). The operating voltage was maintained at 40 kV, the current was maintained at 30 mA and analyzed in the range from 20° to 90°. The data presented confirmed the presence of the PrBSCF...
-
Topography studies of screen-printed carbon electrodes (SPCE) with boron-doped diamond foils
Open Research DataThis dataset contains topography examination of SPCE containing boron-doped diamond BDD foils done with scanning electron microscope. Different points mark different electrode spots: A) working electrode, B) reference electrode, C) counter electrode, D) pads.
-
Electrochemical studies for screen-printed carbon electrodes (SPCE) with boron-doped diamond foils
Open Research DataThis dataset contains electrochemical examination of SPCE paste and SPCE containing boron-doped diamond BDD foils. The studies include kinetics analyses with cyclic voltammetry and electrochemical impedance spectroscopy with different redox probes: hexacyanoferrate(III) and Hexaammineruthenium(III) and potentiostatic open circuit potential at different...
-
Chemical and structural studies of screen-printed carbon electrodes (SPCE) with boron-doped diamond foils
Open Research DataThis dataset contains chemical analyses and structural studies by XPS and Raman spectroscopy, carried out for SPCE containing boron-doped diamond BDD foils done with scanning electron microscope. Different points for XPS analysis mark different electrode spots: A) working electrode, B) reference electrode, C) counter electrode, D) pads.
-
Performance of electrochemical immunoassays for clinical diagnostics of SARS-CoV-2 based on selective nucleocapsid N protein detection: Boron-doped diamond, gold and glassy carbon evaluation
PublicationThe 21st century has already brought us a plethora of new threats related to viruses that emerge in humans after zoonotic transmission or drastically change their geographic distribution or prevalence. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first spotted at the end of 2019 to rapidly spread in southwest Asia and later cause a global pandemic, which paralyzes the world since then. We have designed novel...
-
Scanning electron microscopy (SEM) images of boron-doped diamond thin films at poly(lactic acid)
Open Research DataThe dataset contains the photos obtained by scanning electron microscope(SEM), revealing the surface morphology and cross-section of boron-doped diamond electrodes on commercially available graphene-doped polylactide acid. The boron doping level expressed as the [B]/[C] ratio in the gas phase for these studies was 500 and 10,000 ppm. The top views of...
-
The scanning electron microscopy (SEM) studies of heavy boron-doped diamond oxidation under high-temperature
Open Research DataThe dataset contains the results of scanning electron microscopy (SEM) images of heavy boron-doped diamond (BDD) electrodes subjected to high-temperature oxidation in a furnace at 600 Celsius. The micrographs reveal the material decomposition of BDD grains due to high temperature.
-
Anomalous anisotropy of deuterium-grown boron-doped diamond and the role of boron-tetramers in the Mott-Insulator transition
Open Research DataWe show anisotropy in the superconductivity for boron-doped diamond thin films prepared with Microwave Plasma Assisted Chemical Vapor Deposition using deuterium-rich plasma. This anomalous phase transition is linked with the emergence of boson quantum entanglement states behaving as a bosonic insulating state. Here, we show that the superconducting...
-
SEM micrographs of diamond-phase (sp3-C) rich boron-doped carbon nanowalls (sp2-C)
Open Research DataThis dataset contains the Scanning Electron Microscopy (SEM) micrographs taken for rich boron-doped carbon nanowalls structures, with different boron addition during the synthesis process and different CVD synthesis duration. The [B]/[C] ratios in the plasma were set to 0k, 1.2k, 2k and 5k ppm. The time of growth was ranging between 4 and 9 hours. This...
-
The scanning spreading resistance microscopy (SSRM) studies of heavy boron-doped diamond oxidation under high-temperature
Open Research DataThe dataset contains the results of scanning spreading resistance microscopy (SSRM) of heavy boron-doped diamond (BDD) electrodes subjected to high-temperature oxidation in a furnace at 600 Celsius. The micrographs reveal the local change of electric properties at certainly crystallographic orientations of BDD grains and at the grain boundaries due...
-
The electrochemical studies of thin boron-doped diamond films deposited at conductive poly(lactic acid) 3D prints
Open Research DataThe dataset contains the electrochemical characteristics of the electrodes composed of thin boron-doped diamond films coated on commercially available graphene-doped polylactide acid. The boron doping level expressed as the [B]/[C] ratio in the gas phase for these studies was 500 and 10,000 ppm.
-
Performance of Haemophilus influenzae impedimetric biosensors based on screen-printed carbon electrodes (SPCE) with boron-doped diamond foils
Open Research DataThis dataset contains electrochemical impedance spectroscopy studies of SPCE electrodes containing boron-doped diamond BDD foils and functionalized towards detection of Protein D and Haemophilus influenzae.
-
Diamond Structures for Tuning of the Finesse Coefficient of Photonic Devices
PublicationFinesse coefficient is one of the most important parameters describing the properties of a resonant cavity. In this research, a mathematical investigation of the application of diamond structures in a fiber-optic Fabry–Perot measurement head to assess their impact on the finesse coefficient is proposed. We present modeled transmission functions of cavities utilizing a nitrogen-doped diamond, a boron-doped diamond, nanocrystalline...
-
Low-Coherence Interferometer with Nanocrystalline Diamond Films with Potential Application to Measure Small Biological Samples
PublicationThe study investigates a case of a low-coherence fiber-optic Fabry–Prerot interferometer with a nanocrystalline diamond (NCD) mirror. The method of achieving double density of interference fringes is proposed by the application of birefringent material in the cavity of the interferometer. It can be used to reduce sample volume in comparison to conventional interferometers. The use of a biocompatible diamond mirror makes it specifically...
-
Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films
PublicationBoron doped diamond (BDD) has great potential in electrical, and electrochemical sensing applications. The growth parameters, substrates, and synthesis method play a vital role in the preparation of semiconducting BDD to metallic BDD. Doping of other elements along with boron (B) into diamond demonstrated improved efficacy of B doping and exceptional properties. In the present study, B and nitrogen (N) co-doped diamond has been...
-
Tuning of the finesse coefficient of optoelectronic devices
PublicationOptoelectronic devices attracted considerable attention in many branches of science and technology, which can be attributed to their unique properties. Many of them use optical cavities which parameters can be adopted to specific requirements. This thesis investigates the introduction of diamond structures (nitrogen-doped diamond film, boron-doped diamond film, undoped diamond sheet) to optical cavities to tune their finesse coefficient....
-
Distance measurement by the low coherent interferometer
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1560 nm, an optical spectrum analyzer and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Distance measurement by the low coherent interferometer with NND layer (the source wavelegth 1310 nm)
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1310 nm, an optical spectrum analyzer, and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Influence of the boron doping level on the electrochemical oxidation of raw landfill leachates: advanced pre-treatment prior to the biological nitrogen removal
PublicationThe electrochemical oxidative treatment of landfill leachates (LLs) containing high amounts of ammonia nitrogen and organic matter was used as a promising method, prior to biological processes, to achieve the final effluent quality that would be acceptable by current regulations. The deposited boron-doped diamond electrodes (BDDs) with different boron doping concentrations (10000, 5000 and 500 ppm of B) were applied as anodes....
-
Hemocompatibility of nanocrystalline diamond layers
Open Research DataThe biocompatibility of the diamond films were investigated with whole human blood samples. Blood used in this study was drawn from 10 healthy human patients of different age, sex, and blood group. A 2 ml samples were collected into standard tubes with EDTA anticoagulation agent. Blood was used within 6 hours from the collection time. A reference blood...
-
Al-DIAMOND SCHOTTKY TUNNEL DIODES WITH BARRIER HEIGHT CONTROL
PublicationFew-nanometer-thick very highly boron-doped p-type layers were fabricated at metal-semiconductor interfaces of Schottky barrier diodes formed with aluminum on polycrystalline diamond. Preliminary results show that hermionically-assisted tunneling mechanism results in lower voltage drops at forward biasing of these diodes than expected for the Al-diamond metal-semiconductor potential barrier B. The effective barrier height Bpeff...
-
Seeding enhancement for microcrystaline diamond layers growth on non-diamond substrates
PublicationThe present paper gives an overview on the possible methods of seeding substrates for diamond layers growth. Diamond in reason of his properties is very desirable material in microelectronic, biomedical and waste treatment sensors. Microcrystalline diamond for these applications must be grown on silicon substrate in microwave plasma assisted chemical vapor deposition (MPACVD). To grow diamond on non-diamond surface pre-growth...
-
The use of thin diamond films in fiber optic low-coherence interferometers”
PublicationIn this paper we present the use of thin diamond films in fiber-optic low-coherence interferometers. Two kinds of diamond surfaces were used: undoped diamond film and boron-doped diamond film. They were deposited on glass plates as well as silicon layers. A conventionally used mirror was used as a reference layer. Diamond films were deposited using Microwave Plasma Enhanced Chemical Vapour Deposition (μPE CVD) system. Measurements...
-
Application of thin diamond films in low-coherence fiber-optic Fabry Pérot displacement sensor
PublicationThe novel fiber-optic low coherence sensor with thin diamond films is demonstrated. The undoped and boron-doped diamond films were elaborated by the use of the microwave plasma enhanced chemical vapor deposition (μPE CVD) system. The optical signal from the Fabry–Pérot cavity made with the application of those thin films is sensitive to displacement. The sensor characterization was made in the range of 0–600 μm. The measurements...
-
Enhanced boron doping of thin diamond films grown in deuterium-rich microwave plasma
PublicationThe boron-doped diamond thin films were growth in deuterium rich microwave plasma in CVD process. The mechanism of influence of plasma composition on boron doping level was studied using optical emission spectroscopy. Deuterium rich plasma results in an increased dissociation of B2H6 precursor and intense boron-radicals' production. In consequence, a higher doping level of diamond films was observed by means of Laser Induced Breakdown...
-
Structural and electronic properties of diamond-composed heterostructures
PublicationDiamond is a promising material for 21st century electronics due to its high thermal and electronic conductivity, biocompatibility, chemical stability, high wear resistance, and possibility of doping. However, the semiconductor properties of diamond, especially free-standing films, have not been fully explored. Nor have their integration with polymers and fragile materials and their applications as electronic components. In this...
-
Anna Danuta Dettlaff dr inż.
PeopleShe received her Master of Science degree in engineering with honours in 2013 at the Gdańsk University of Technology at the Department of Analytical Chemistry. In 2013-2017, she was a PhD student in the field of Chemical Technology at Faculty of Chemistry. Her doctoral dissertation was entitled “Nanocomposites based on conducting polymer and carbon materials for supercapacitor application”. In 2015, she was doing a three-month...
-
RAMAN DIAGNOSTICS OF CVD DIAMOND GROWTH
PublicationDevelopment of Raman spectroscopic system for diagnostics of growth of diamond and BDD (Boron- Doped-Diamond) thin films during μPA CVD (Microwave Plasma Assisted Chemical Vapour Deposition) process is described. Raman studies of such films were carried out as in-situ monitoring of film deposition as ex-situ measurements conducted for a sample outside the reaction vessel after manufacturing process. Modular system for the in-situ...
-
Wide-field magnetometry using nitrogen-vacancy color centers with randomly oriented micro-diamonds
PublicationMagnetometry with nitrogen-vacancy (NV) color centers in diamond has gained significant interest among researchers in recent years. Absolute knowledge of the three-dimensional orientation of the magnetic field is necessary for many applications. Conventional magnetometry measurements are usually performed with NV ensembles in a bulk diamond with a thin NV layer or a scanning probe in the form of a diamond tip, which requires a...
-
N-doped mesoporous carbon nanosheets obtained by pyrolysis of a chitosan–melamine mixture for the oxygen reduction reaction in alkaline media.
PublicationBy simple thermal decomposition of low-cost precursors (chitosan, melamine) in an inert atmosphere, nitrogen-doped porous carbonaceous materials were prepared. The samples pyrolyzed at 700 C are composed of mainly mesoporous nitrogen-doped carbon nanosheets and partially graphitized carbon. The nanosheets contain a disordered area due to the strain imposed by the presence of nitrogen and/or oxygen groups in their structure. Some...
-
Novel nitrogen precursors for electrochemically driven doping of titania nanotubes exhibiting enhanced photoactivity
PublicationNitrogen doped titania nanotubes were successfully sensitized by electrochemical method, i.e. as-anodized titania was immersed in different amine (diethyleneamine-DETA, triethyleneamine-TEA, ethylenediamine-EDA) and urea (U) solution and a constant potential was applied. The highly ordered morphology of fabricated N-TiO2 was investigated by using scanning electron microscopy. Spectroscopic techniques, i.e. UV-Vis spectroscopy,...