Search results for: anode material
-
The XPS spectra of ZrO2/5%Cu prepared using wet impregnation method
Open Research DataThe dataset includes XPS spectra of ZrO2/5%Cu catalyst sintered under air atmosphere. Samples were produced using aqueous soft chemistry methods and incipient wettness impregnation using nitrate solution. The XPS spectra were collected for all species.
-
The XPS spectra of CeO2/5%Cu prepared using wet impregnation method
Open Research DataThe dataset includes XPS spectra of CeO2/5%Cu catalyst sintered under air atmosphere. Samples were produced using aqueous soft chemistry methods and incipient wettness impregnation using nitrate solution. The XPS spectra were collected for all species.
-
The XPS spectra of SrTiO3/5%Cu prepared using wet impregnation method
Open Research DataThe dataset includes XPS spectra of SrTiO3/5%Cu catalyst sintered under air atmosphere. Samples were produced using aqueous soft chemistry methods and incipient wettness impregnation using nitrate solution. The XPS spectra were collected for all species.
-
The XPS spectra of AlOOH/5%Cu prepared using wet impregnation method
Open Research DataThe dataset includes XPS spectra of AlOOH/5%Cu catalyst sintered under air atmosphere. Samples were produced using aqueous soft chemistry methods and incipient wettness impregnation using nitrate solution. The XPS spectra were collected for all species.
-
Design and characterization of apatite La9.8Si5.7Mg0.3O26±δ-based micro-tubular solid oxide fuel cells
PublicationIn this study, electrolyte-supported (Cell A) and anode-supported (Cell B) micro-tubular solid oxide fuel cells (SOFCs) based on the La9.8Si5.7Mg0.3O26±δ (LSMO) electrolyte is built through an extrusion and dip-coating processes. The formulations and process conditions for these cells are established and optimized. Both cell configurations show no visible delamination or cracking, and reaction zones and inter-diffusion of any species...
-
CeCu2O4 as a functional layer on solid oxide fuel cells for synthetic biogas reforming
PublicationSolid Oxide Fuel Cells (SOFC) are one of the most promising electrochemical devices, which can convert chemical energy to the electrical energy these days. Their ability to work with different kind of fuel makes them noteworthy. SOFC can work with biogas. The problem arises when solid carbon starts to be deposited in anode. That leads to degradation of fuel cell. Simple solution is to apply catalytic functional layer, which is...
-
Hard carbon derived from rice husk as low cost negative electrodes in Na-ion batteries
PublicationHere, we report the synthesis of hard carbon materials (RH) made from natural rice husk through a single pyrolysis process and their application as an anode in sodium-ion batteries. The studies show that the electrochemical properties of RHs are affected by the treatment temperatures, which determine the materials morphology, in particular, their degree of graphitization and extent of continuous channels (nanovoids). The latter...
-
Fully enzymatic mediatorless fuel cell with efficient naphthylated carbon nanotube-laccase composite cathodes
PublicationAn efficient, mediator-free enzymatic glucose/O2 biofuel cell with an oxygen intensive anode based on glucose dehydrogenase is presented. In the device,the power of the biofuel cell and electrode potentials of each of the enzymatic electrodes were monitored in parallel under the biofuel cell working conditions. The carbon nanotube composite biocathode demonstrates an almost constant electrode potential vs. saturated calomel electrode...
-
X-ray Photoelectron Spectroscopy studies of ammonium vanadate
Open Research DataThe DataSet contains the high-resolution XPS studies of the ammonium vanadate nanostructures obtained by the hydrothermal method. XPS analyses were carried out with an X-ray photoelectron spectrometer (Omicron NanoTechnology) with a 128-channel collector. The measurements were performed at room temperature in an ultra-high vacuum condition (below 1.1x10-8...
-
XPS analysis of the GO based materials
Open Research DataGraphene oxides samples were measured by XPS method. The X-ray photoemission spectroscopy measurements were carried out with Omicron NanoTechnology UHV equipment. The hemispherical spectrophotometer was equipped with a 128-channel collector. The XPS measurements were performed at room temperature at a pressure below 1.1 × 10−8 mBar. The photoelectrons...
-
Performance of a single layer fuel cell based on a mixed proton-electron conducting composite
PublicationMany of the challenges in solid oxide fuel cell technology stem from chemical and mechanical incompatibilities between the anode, cathode and electrolyte materials. Numerous attempts have been made to identify compatible materials. Here, these challenges are circumvented by the introduction of a working single layer fuel cell, fabricated from a composite of proton conducting BaCe0.6Zr0.2Y0.2O3-δ and a mixture of semiconducting...
-
Forming Ni-Fe and Co-Fe Bimetallic Structures on SrTiO3-Based SOFC Anode Candidates
PublicationThe aim of this work was to verify the possibility of forming Ni-Fe and Co-Fe alloys via topotactic ion exchange exsolution in Fe-infiltrated (La,Sr,Ce)0.9(Ni,Ti)O3-δ or (La,Sr,Ce)0.9(Co,Ti)O3-δ ceramics. For this purpose, samples were synthesized using the Pechini method and then infiltrated with an iron nitrate solution. The reduction process in dry H2 forced the topotactic ion exchange exsolution, leading to the formation of...
-
Electrolytic corrosion of water pipeline system in the remote distance from stray currents– case study
PublicationCase study of corrosion failure of urban water supply system caused by the harmful effects of stray currents was presented. The failure occurred at a site distant from the sources of these currents namely the tramway and railway traction systems. Diagnosis revealed the stray currents flow to pipeline over a remote distance of 800 ÷ 1,000 meters from the point of failure. At the point of failure stray currents flowed from the pipeline...
-
Performance and Stability in H2S of SrFe0.75Mo0.25O3-δ as Electrode in Proton Ceramic Fuel Cells
PublicationThe H2S-tolerance of SrFe0.75Mo0.25O3-δ (SFM) electrodes has been investigated in symmetric proton ceramic fuel cells (PCFC) with BaZr0.8Ce0.1Y0.1O3-δ (BZCY81) electrolyte. The ionic conductivity of the electrolyte under wet reducing conditions was found to be insignificantly affected in the presence of up to 5000 ppm H2S. The fuel cell exhibited an OCV of about 0.9 V at 700 °C, which dropped to about 0.6 V and 0.4 V upon exposure...
-
Study of the chemical state of Gd in a Ba-La-Gd-Co based ceramic
Open Research DataBarium, Lanthanum, Gadolinium and Cobaltium precursors were used for production of ceramic materials. Samples were produced by standard solid state reaction. Samples were annealed at 300 Celsius degree in wet and dry atmosphere. Annealing takes 72h or 2h. Results of annealing on a Gadolinum were observed by X-Ray photoemission spectroscopy (XPS), OmicronNanotechnology....
-
Manganese–Cobalt Based Spinel Coatings Processed by Electrophoretic Deposition Method: The Influence of Sintering on Degradation Issues of Solid Oxide Cell Oxygen Electrodes at 750 °C
PublicationThis paper seeks to examine how the Mn–Co spinel interconnect coating microstructure can influence Cr contamination in an oxygen electrode of intermediate temperature solid oxide cells, at an operating temperature of 750 °C. A Mn–Co spinel coating is processed on Crofer 22 APU substrates by electrophoretic deposition, and subsequently sintered, following both the one-step and two-step sintering, in order to obtain significantly...
-
Sustainable energy system combined biogas-feedSolid Oxide Fuel Cell and Microalgae technology
PublicationIn the new frontier of energy and environmental safety, new efficient and clean safe energy conversion systems are required. In this sense, the present work is framed within the context of Circular Economy and proposes a multidisciplinary study for the development of more efficient, economically viable and non-polluting energy conversion systems, based on the synergetic combination of different technologies: fuel cells, biofuels,...
-
Advanced Lithium-Ion Battery Model for Power System Performance Analysis
PublicationThe paper describes a novel approach in battery storage system modelling. Different types of lithium-ion batteries exhibit differences in performance due to the battery anode and cathode materials being the determining factors in the storage system performance. Because of this, the influence of model parameters on the model accuracy can be different for different battery types. These models are used in battery management system...
-
Sandwich Biobattery with Enzymatic Cathode and Zinc Anode Integrated with Sensor
PublicationCarbon paper covered with side-naphthylated multi walled carbon nanotubes was used as the conducting support for the construction of a biocathode in a hybrid biofuel cell. Laccase Carrena unicolor enzyme was employed as the catalyst for the 4e reduction of oxygen and a zinc disc covered with hopeite was used as the anode. Derivatized carbon nanotubes increase the working surface of the electrode and provide direct contact with...
-
The electrical properties mesurements of DIR-SOFC with Ce0.8Fe0.2O2-s functional layer
Open Research DataThe dataset includes the electrical properties mesurements of SOFC with Ce0.8Fe0.1O2-s layer. Samples were produced using aqueous soft chemistry methods (microemulsion method) and applied in form of a layer onto the anode of the commercial SOFC. The SOFC was working under biogas feeding at 750oC. The layers were sintered at 1100oC.
-
The electrical properties mesurements of DIR-SOFC with Ce0.8Co0.2O2-s functional layer
Open Research DataThe dataset includes the electrical properties mesurements of SOFC with Ce0.8Co0.1O2-s layer. Samples were produced using aqueous soft chemistry methods (microemulsion method) and applied in form of a layer onto the anode of the commercial SOFC. The SOFC was working under biogas feeding at 750oC. The layers were sintered at 1100oC.
-
The electrical properties mesurements of DIR-SOFC with Ce0.8Mn0.2O2-s functional layer
Open Research DataThe dataset includes the electrical properties mesurements of SOFC with Ce0.8Mn0.1O2-s layer. Samples were produced using aqueous soft chemistry methods (microemulsion method) and applied in form of a layer onto the anode of the commercial SOFC. The SOFC was working under biogas feeding at 750oC. The layers were sintered at 1100oC.
-
The electrical properties mesurements of DIR-SOFC with Ce0.8Ni0.2O2-s functional layer
Open Research DataThe dataset includes the electrical properties mesurements of SOFC with Ce0.8Ni0.1O2-s layer. Samples were produced using aqueous soft chemistry methods (microemulsion method) and applied in form of a layer onto the anode of the commercial SOFC. The SOFC was working under biogas feeding at 750oC. The layers were sintered at 1100oC.
-
The electrical properties mesurements of DIR-SOFC with CeO2-s functional layer
Open Research DataThe dataset includes the electrical properties mesurements of SOFC with CeO2-s layer. Samples were produced using aqueous soft chemistry methods (microemulsion method) and applied in form of a layer onto the anode of the commercial SOFC. The SOFC was working under biogas feeding at 750oC. The layers were sintered at 1100oC.
-
The electrical properties mesurements of DIR-SOFC with Ce0.8Cu0.2O2-s functional layer
Open Research DataThe dataset includes the electrical properties mesurements of SOFC with Ce0.8Cu0.1O2-s layer. Samples were produced using aqueous soft chemistry methods (microemulsion method) and applied in form of a layer onto the anode of the commercial SOFC. The SOFC was working under biogas feeding at 750oC. The layers were sintered at 1100oC.
-
Influence of the annealing condictions on the chemical structure of LaBaGdCo ceramics
Open Research DataCeramic samples based on Barium, Lanthanum, Gadolinium and Cobaltium were produced by solid state reaction. After sintring in a furnance, samples were annealed at 300 Celsius degree in wet and dry atmosphere. Annealing takes 72h or 2h. Results of annealing were observed by X-Ray photoemission spectroscopy (XPS), OmicronNanotechnology. XPS analysis...
-
An integral-differential method for impedance determination of the hydrogen oxidation process in the presence of carbon monoxide in the proton exchange membrane fuel cell
PublicationThe impedance of a proton exchange membrane fuel cell powered by hydrogen contaminated with carbon monoxide, ranging from 150 to 300 ppb, is measured and discussed. The tested range of CO concentration complied with the fuel standard specified in the ISO standards. Studies of influence of CO contamination on operation of PEMFC are crucial for further development and commercialization of fuel cells for automotive applications. Based...
-
Towards spectroscopic monitoring of photoelectrodes: In-situ Raman photoelectrochemistry of a TiO2/prussian blue photoanode
PublicationHere, novel in-situ Raman photoelectrochemical measurements are performed. The obtained results have proved that it is possible to track the progress of a photoelectrochemical reaction that takes place on a semiconducting electrode using the spectroscopic method. As an exemplary system, the Ti/TiO2/Prussian blue electrode is investigated. Since TiO2 is an n-type semiconductor, it cannot act as an efficient anode in dark conditions....
-
THE ROLE OF THIN FUNCTIONAL LAYERS IN SOLID OXIDE FUEL CELLS
PublicationWidespread commercialization of solid oxide fuel cells requires lowering its cost. It is generally accepted that to lower the cost of solid oxide fuel cells it is necessary to use metal alloys as interconnectors and, consequently, lower its operating temperature to slow down interconnectors degradation. As a result the area specific resistance of the cathodes should be lowered to sustain the performance of the cells. In order to...
-
The changes of outlet gases concentrations from SOFC with Ce(Pr,Sm)O2-s layers
Open Research DataThe dataset includes The changes of outlet gases concentrations from SOFC with Ce(Pr,Sm)O2-s layers. Samples were produced using aqueous soft chemistry methods (microemulsion method) and applied in form of a layer onto the anode of the commercial SOFC. The SOFC was working under biogas feeding.
-
Valence state of Manganium in a MnCoO ceramics
Open Research DataManganium -cobalt based ceramics materials were produced by solid state reaction and sintred in a furnance in air atmosphere for 20h. Annealing temperature was 600 Celsius degree. For investigations a series of samples, with a various composition was chosen: MnCoO, Mn, Co2O and Mn2CoO. In order to determine valence states of the Mn, X-Ray photoemission...
-
Lanthanum investigations in ceramics annealed in a dry and wet atmosphere
Open Research DataCeramics based on Barium, Lanthanum, Gadolinium and Cobaltium were produced by standard solid state reaction from oxides and carbonate powders. After sintring, samples were annealed for 2 hours or 72 hours at 300 Celsius degree in a both: wet and dry atmosphere. Results of annealing on a chemical composition and valence state of lanthanum were observed...
-
Investigations of the valence state of Co in a MnCoO ceramics
Open Research DataMcCoO ceramics materials were produced by solid state reaction and sintred in a furnance in air atmosphere for 20h. Annealing temperature was 600 Celsius degree. For investigations a series of samples, with a various composition was chosen: MnCoO, Mn, Co2O and Mn2CoO. Chemical behaviour of the Cobaltium was measured by XPS method. The analyses were...
-
XPS study of the YST ceramics
Open Research DataYttrium-doped strontium titanate was prepared via conventional solid-state reaction method from Y2O3 (Sigma Aldrich, 99,9%), TiO2 (Sigma Aldrich, 99%) and SrCO3 (Sigma Aldrich,98%). For comparision, two other techniques were used for synthesis: Pechini and wet methods. Both kind of samples were measured, after and before reduction process (in a hydrogen)....
-
Substrate characterization in a electrochemically derived Manganium-Cobaltium thin films
Open Research DataManganium-Cobaltium thin films were electrochemically deposited on a Ni foams subsrates in a one-step process at −1.1 V vs. Ag/AgCl in an aqueous solution of differently concentrated Mn(NO3)2·4H2O and Co(NO3)2·6H2O with the deposition time limited by charges of 60, 120, and 200 mC at 25 °C. The concentration ratios of Mn(NO3)2·4H2O to Co(NO3)2·6H2O...
-
Chemical analysis of the Au-Ag nanoaloys
Open Research DataThe nanostructures of AuAg nanoalloys were prepared by sequential sputtering of gold and silver thin films. Single layer thickness was usually 2.8 nm were deosted by magnetron sputtering method in a Ar plasma. As deposited layers were annealed in Ar atmosphere at 550 degress for 15 minutes. For XPS measurements five samples were selected: pure gold...
-
Effect of interconnect coating procedure on solid oxide fuel cell performance
PublicationChromium (Cr) species vaporizing from chromia-forming alloy interconnects is known as a source of degradation in solid oxide fuel cell (SOFC) stacks called “cathode poisoning”. (Mn,Co)3O4 spinel coatings offer good protection against Cr evaporation during operation. In this study, Crofer 22 APU steel interconnects were electrophoretically deposited in different mediums to obtain high packing of green coating layer. The optimized...
-
The impedance of hydrogen oxidation reaction in a proton exchange membrane fuel cell in the presence of carbon monoxide in hydrogen stream
PublicationEvaluation of performance of a proton exchange membrane fuel cell, which is affected by carbon monoxide that pollutes the hydrogen stream, was presented. This influence was studied for carbon monoxide concentration of 125–325 ppb, which are close to values specified in ISO 14687:2019 standard. Performed studies provided crucial information for further development of fuel cell as an energy source for automotive application. Impedance...
-
Correlation between partial inhibition of hydrogen evolution using thiourea and catalytic activity of AB5-type hydrogen storage alloy towards borohydride electrooxidation
PublicationDirect borohydride fuel cells (DBFCs) are devices which directly convert the chemical energy stored in the borohydride ion and oxidant into electrical energy as a result of redox reactions. Unfortunately, a significant amount of fuel is lost as a result of the undesirable hydrolysis reaction. The selection of an efficient borohydride hydrolysis inhibitor requires detailed knowledge regarding the interaction mechanism between the...
-
Degradation of xylose using a microbial fuel cell
PublicationIt is generally known, that many kind of microorganisms are capable of using carbohydrates as a source of carbon and energy in an environment. The biodegradation process of monosaccharides from pentoses (in this case- racemic mixture of D - and L – xylose) is an immense opportunity for an entire reduction of biological contamination to neutral compounds through MFC. The process is occurred in a single-chamber MFC, which is contained...
-
Partial inhibition of borohydride hydrolysis using porous activated carbon as an effective method to improve the electrocatalytic activity of the DBFC anode
PublicationCarbon materials are commonly used catalyst supports in various types of fuel cells. Due to the possibility of designing their properties, they seem to be attractive and functional additives. In Direct Borohydride Fuel Cells (DBFCs), the electrooxidation reaction of borohydride competes with the undesirable hydrolysis reaction, therefore our work aimed to modify anodes based on a multi-component hydrogen storage alloy with a small...
-
Combination of air-dispersion cathode with sacrificial iron anode generating Fe2+Fe3+2O4 nanostructures to degrade paracetamol under ultrasonic irradiation
PublicationIn the present study, ultrasound (US) was coupled with an electrochemical process (ECP) consisting of a novel cathode of carbon cloth (CC)-carbon black (CB) as the nano-composite air-dispersion cathode (NADC) for the degradation of paracetamol (APAP) in an aquatic medium. The NADC favored in situ production of H2O2 by the cathodic reduction. The implementation of iron sacrificial anode instead of dimensionally stable anodes resulted...
-
In situ study of a composition of outlet gases from biogas fuelled Solid Oxide Fuel Cell performed by the Fourier Transform Infrared Spectroscopy
PublicationThe purpose of this study was to develop a method and software based on the Fourier Transform Infrared Spectroscopy for the in-situ, quantitative analysis of the composition of outlet gases from Solid Oxide Fuel Cell (SOFC). The calibration procedure performed at the beginning of the experiment indicated a polynomial dependence between the concentration of a calibrating gas (CO, CO2, CH4) and the corresponding integrated absorbance in...
-
Increasing efficiency of technological process by limiting impact of corrosive environment on operation of spiral classifiers
PublicationMost of the technological operations related to the preparation of the output to be enriched and to the production of the final copper concentrate take place with the use of water environment. Water management, besides using innovative technical and technological solutions, is a significant factor in the whole copper ore enrichment process. Mine water resources and surface water of the tailing pond named "Żelazny Most" are the...
-
CeO2/La2O3/MWCNTs as an efficient nano-electrocatalyst for use in the anode of alcohol fuel cells
PublicationOne of the most important challenges in commercializing Direct Alcohol Fuel Cells (DAFCs) is the significant expense of advanced catalysts used in their anodes and cathodes and the CO poisoning of these catalysts with alcohol oxidation by-products. Alcohols oxidation reaction occurred in the anode of DAFCs. Within this study, a tripartite catalyst, comprising cerium oxide (CeO2) and lanthanum oxide (La2O3) integrated with multi-walled...
-
Reduction of the strontium titanate doped by Ytrium ceramics observed by X-ray photoemission spectroscopy method
Open Research DataYtrium-doped strontium titanate (YSTF) ceramics materials were manufactured by three various methods: 1) standard solid-state reaction method from Y2O3 (Sigma Aldrich, 99,9%), TiO2 (Sigma Aldrich, 99%) and SrCO3 (Sigma Aldrich,98%), 2) Pechini method, 3) wet method.
-
Microscale microbial fuel cell (MFC) batch experiment results
Open Research DataThis dataset provides the results of six different scenarios meant to assess the efficiency COD, TN, TP removal and voltage generation in microbial fuel cells (MFC).
-
Improvement of Oxygen Electrode Performance of Intermediate Temperature Solid Oxide Cells by Spray Pyrolysis Deposited Active Layers
PublicationIntermediate temperature solid oxide fuel cells oxygen electrodes are modified by active interfacial layers. Spray pyrolysis is used to produce thin (≈500 nm) layers of mixed ionic and electronic conductors: Sm0.5Sr0.5CoO3−δ (SSC), La0.6Sr0.4CoO3−δ (LSC), La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), and Pr6O11 (PrOx) on the electrode–electrolyte interface. The influence of the annealing temperature on the electrode polarization (area specific...
-
Fluoroaromatic substituents attached to carbon nanotubes help to increase oxygen concentration on biocathode in biosensors and biofuel cells
PublicationBased on the known ability of perfluorodecalin/perfluorohydrocarbons to enhance oxygen solubility we modified oxygen sensitive biocathode by adding perfluorinated components to the catholite. This procedure improved the efficiency of the oxygen sensitive cathodes. Glassy carbon electrodes covered with single-wall carbon nanotubes (SWCNTs) with covalently bonded perfluoroaromatic groups were shown to be more sensitive to oxygen,...
-
Effects of thermal history on the performance of low-temperature solid oxide fuel cells with Sm0.2Ce0.8O2-δ electrolyte and LiNi0.81Co0.15Al0.04O2 electrodes
PublicationIn this study, low-temperature solid oxide fuel cells with an ∼560 μm thick Sm0.2Ce0.8O2−δ (SDC) electrolyte and ∼890 μm thick LiNi0.81Co0.15Al0.04O2−δ (NCAL) electrodes are constructed and characterized under three experimental conditions. The cell with an NCAL cathode pre-reduced under an H2 atmosphere at 550 °C presents the best electrochemical performance. This is ascribed to facts that the reduction reaction generating Ni–Co...