Search results for: electron scattering
-
Scattering of electrons by a 1,2-butadiene (C4H6) molecule: measurements and calculations
PublicationWe present the results of experimental and theoretical study on electron collisions with a 1,2-butadiene (H2C=C=CHCH3) molecule. Absolute grand-total cross sections (TCSs) were measured using a linear electron-transmission method for collision energies in the 0.5–300 eV range. Two distinct features in the TCS energy curve were detected: a narrow peak located at 2.3 eV and a broad enhancement centered around 9 eV. We attributed...
-
Anionic states of C6Cl6 probed in electron transfer experiments
PublicationThis is the first comprehensive investigation on the anionic species formed in collisions of fast neutral potassium (K) atoms with neutral hexachlorobenzene (C6Cl6) molecules in the laboratory frame range from 10 up to 100 eV. In such ion-pair formation experiments, we also report a novel K+ energy loss spectrum obtained in the forward scattering giving evidence of the most accessible electronic states. The vertical electron affinity...
-
Low-energy positron scattering from gas-phase benzene
PublicationIn this paper we are presenting calculations of the elastic cross section of positrons with gas-phase benzene for the energy range from 0.25 eV to 9.0 eV. The calculations are done with the molecular R-matrix method for positron-scattering from poly-atomic molecules using a scaling factor to scale the electron-positron interaction. The scaling factor influences the position of the poles of the R-matrix. We adjust the scaling factor...
-
Do positrons measure atomic and molecular diameters?
PublicationWe report on density functional calculations (DFT) of elastic integral scattering cross-sections for positron collisions with argon, krypton, nitrogen and methane. The long-range asymptotic polarization potential is described using higher-order terms going much beyond an induced dipole potential (−α / r 4) while the short-range interaction is modeled by two different forms of electron – positron correlation potential (Boroński-Nieminen...
-
Generalized Einstein relation in disordered organic semiconductors: Influence of the acoustic phonons–charge carriers scattering
PublicationIn this work, we analyze the generalized Einstein relation for disordered organic semiconductors with a non-equilibrium Druyvesteyn-type distribution function. The Druyvesteyn behavior of hot electrons in a solid state is associated with the acoustic phonons–charge carriers scattering. Such a case has been experimentally demonstrated in electroluminescent inorganic rare–earth–doped zinc chalcogenides. Therefore, we can assume that,...
-
Electron collisions with methyl-substituted ethylenes: Cross section measurements and calculations for 2-methyl–2-butene and 2,3-dimethyl–2-butene
PublicationWe report electron-scattering cross sections determined for 2-methyl–2-butene [(H3C)HC==C(CH3)2] and 2,3-dimethyl–2-butene [(H3C)2C=C(CH3)2] molecules. Absolute grand-total cross sections (TCSs) were measured for incident electron energies in the 0.5–300 eV range, using a linear electron-transmission technique. The experimental TCS energy dependences for the both targets appear to be very similar with respect to the shape. In each...
-
The role of low-energy electrons in the charging process of LISA test masses
PublicationThe estimate of the total electron yield is fundamental for our understanding of the test-mass charging associated with cosmic rays in the Laser Interferometer Space Antenna (LISA) Pathfinder mission and in the forthcoming gravitational wave observatory LISA. To unveil the role of low energy electrons in this process owing to galactic and solar energetic particle events, in this work we study the interaction of keV and sub-keV...
-
Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions
PublicationAg-based plasmonic nanostructures were manufactured by thermal annealing of thin metallic films. Structure and morphology were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). SEM images show that the formation of nanostructures is influenced by the initial layer thickness as well as the...
-
Laser-Assisted Synthesis and Oxygen Generation of Nickel Nanoparticles
PublicationNowadays, more than ever, environmental awareness is being taken into account when it comes to the design of novel materials. Herein, the pathway to the creation of a colloid of spherical, almost purely metallic nickel nanoparticles (NPs) through pulsed laser ablation in ethanol is presented. A complex description of the colloid is provided through UV-vis spectroscopy and dynamic light scattering analysis, ensuring insight into...
-
Relationship between GIX, SIDX, and ROTI ionospheric indices and GNSS precise positioning results under geomagnetic storms
PublicationIonospheric indices give information about ionospheric perturbations, which may cause absorption, diffraction, refraction, and scattering of radio signals, including those from global navigation satellite systems (GNSS). Therefore, there may be a relationship between index values and GNSS positioning results. A thorough understanding of ionospheric indices and their relationship to positioning results can help monitor and forecast...
-
Chlorine-free extraction and structural characterization of cellulose nanofibers from waste husk of millet (Pennisetum glaucum)
PublicationThis study aims to extract cellulose nanofibers (CNFs) from a sustainable source, i.e. millet husk, which is an agro-waste worthy of consideration. Pre-treatments such as mercerisation, steam explosion, and peroxide bleaching (chlorine-free) were applied for the removal of non-cellulosic components. The bleached millet husk pulp was subjected to acid hydrolysis (5% oxalic acid) followed by homogenization to extract CNFs. The extracted...
-
Brygida Mielewska dr
PeopleBorn on 1 December 1972 in Gdynia. Education and professional experience:June 1997 MSc in Physics, Gdańsk University, Faculty of Mathematics and Physics; October 1997 – August 2003 – Assistant at Gdańsk University of Technology (GUT), Faculty of Applied Physics nad Technical Mathematics, Department of Physics of Electronic Phenomena;June 2003 – PhD in Physics, thesis advisor prof. dr hab. Mariusz Zubek; September 2003- January...
-
New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5
PublicationIn this work, we present our discovery and characterization of a new kagome prototype structure, KV3Sb5. We also present the discovery of the isostructural compounds RbV3Sb5 and CsV3Sb5. All materials exhibit a structurally perfect two-dimensional kagome net of vanadium. Density-functional theory calculations indicate that the materials are metallic, with the Fermi level in close proximity to several Dirac points. Powder and single-crystal...
-
PREPARATION AND CHARACTERIZATION OF CoFe2O4/TiO2-PANI HYBRID NANOCOMPOSITE WITH MAGNETIC AND PHOYOCATALYTIC ACTIVITY
PublicationHybrid nanocomposites consisting of inorganic component and organic conducting polymer are promising materials, which can be applied in heterogeneous photocatalysis. Titanium(IV) oxide is widely used photocatalysts due to its non-toxicity, low cost and chemical stability. The main disadvantage of TiO2 is low photocatalytic activity under visible light. Conducting polymers, also known as conjugated polymers are polymer materials...
-
Elastic scattering and rotational excitation of Li2 by positron impact
Publication -
The effect of microemulsion composition on the morphology of Pd nanoparticles deposited at the surface of TiO2 and photoactivity of Pd-TiO2
PublicationA series of microemulsion (ME) system, constituted by different water to surfactant molar ratios (Wo) and oil to surfactant mass ratios (S), have been applied for Pd-TiO2 preparation. The effect of ME properties on the morphology of Pd nanoparticles formed at TiO2 surface and an effect of Pd size and distribution on the surface and photocatalytic properties of Pd-TiO2 were investigated. Microemulsion systems were characterized...
-
Stable and degradable microgels linked with cystine for storing and environmentally triggered release of drugs
PublicationEnvironmentally sensitive, degradable microgels based on poly(N-isopropylacrylamide) (pNIPA) crosslinked with the diacryloyl derivative of cystine (BISS) were synthesized by applying surfactant-free emulsion polymerization. pNIPA contributed the sensitivity to temperature to the microgels and the cross-linker made them degradable and sensitive to pH. The morphology of the microgels was investigated by using scanning and transmission...
-
Enhanced cellulose extraction from agave plant (Agave americana Species) for synthesis of magnetic/cellulose nanocomposite for defluoridation of water
PublicationResearch on fluoride removal from water is currently focusing on the development of innovative materials for defluoridation water. The current study extracted and used enhanced cellulose from Agave americana species to synthesize a magnetic/cellulose nanocomposite for water defluoridation. Strong and light binary acids (H2SO4 and CH3COOH) were utilized to pretreat raw material to enhance cellulose extraction. Central composite...
-
Polarization effects, shape resonances and bound states in low energy positron elastic scattering by Zinc and Cadmium vapours
Publication -
Local structural and chemical ordering of nanosized Pt(3±δ)Co probed by multiple-scattering x-ray absorption spectroscopy
PublicationThis work reports a detailed investigation of the local structure and chemical disorder of a Pt(3±δ)Co thin film and Pt(3±δ)Co nanoparticles. We have used a combination of techniques including x-ray absorption spectroscopy (XAS), x-ray diffraction (XRD), and high-resolution transmission electron microscopy (TEM). The important effect of chemical ordering on pair and three-atom configurations has been studied using computer simulations...
-
JMATRIX - a package for relativistic J-matrix calculations in elastic scattering of electrons from model potentials
PublicationWe present a software package JMATRIX, consisting of two computer codes written in FORTRAN 95 and parallelized with OpenMP, implementing the so-called J-matrix method, applied to elastic scattering of electrons on the radial potential, vanishing faster than Coulomb one. In the J-matrix method, physical scattering problem is replaced by using well-defined model, which is solved analytically. Presented software implements both non-relativistic...
-
Application of the Monte Carlo algorithm for solving volume integral equation in light scattering simulations
PublicationVarious numerical methods were proposed for analysis of the light scattering phenomenon. Important group of these methods is based on solving the volume integral equation describing the light scattering process. The popular method from this group is the discrete dipole approximation (DDA). DDA uses various numerical algorithms to solve the discretized integral equation. In the recent years, the application of the Monte Carlo (MC)...
-
Higher order polarizabilities and the positron forward scattering problem: Convergence between calculated and measured cross sections in the very low energy regime
Publication -
KOLMOGOROV EQUATION SOLUTION: MULTIPLE SCATTERING EXPANSION AND PHOTON STATISTICS EVOLUTION MODELING
PublicationWe consider a formulation of the Cauchy problem for the Kolmogorov equation which corresponds to a localized source of particles to be scattered by a medium with a given scattering amplitude density. The multiple scattering amplitudes are introduced and the corresponding series solution of the equation is constructed. We investigate the integral representation for the first series terms, its estimations and values of the photon...
-
Bounds on isolated scattering number
PublicationThe isolated scattering number is a parameter that measures the vulnerability of networks. This measure is bounded by formulas de- pending on the independence number. We present new bounds on the isolated scattering number that can be calculated in polynomial time.
-
Bounds on isolated scattering number
PublicationThe isolated scattering number is a parameter that measures the vulnerability of networks. This measure is bounded by formulas de- pending on the independence number. We present new bounds on the isolated scattering number that can be calculated in polynomial time.
-
Convergence of Monte Carlo algorithm for solving integral equations in light scattering simulations
PublicationThe light scattering process can be modeled mathematically using the Fredholm integral equation. This equation is usually solved after its discretization and transformation into the system of algebraic equations. Volume integral equations can be also solved without discretization using the Monte Carlo (MC) algorithm, but its application to the light scattering simulations has not been sufficiently studied. Here we present implementation...
-
Simulating propagation of coherent light in random media using the Fredholm type integral equation
PublicationStudying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g....
-
The influence of chitosan hydrogel cross-linking by agarose on coating physico-chemical properties
Open Research DataThis dataset contains various physicochemical analyses showing the effect of different concentration of chitosan and the cross-linking agent agarose. Each sample is labeled by C and A representing chitosan and agarose concentrations, respectively, while the exact amounts are depicted in the attached table. Fourier-transform infrared (FT-IR) spectroscopy...
-
Degradation of cefadroxil drug by newly designed solar light responsive alcoholic template-based lanthanum ferrite nanoparticles
PublicationIn this work, lanthanum ferrite nanoparticles were synthesized via a simple co-precipitation method. Two different templates, namely sorbitol and mannitol, were used in this synthesis to tune the optical, structural, morphological, and photocatalytic properties of lanthanum ferrite. The synthesized lanthanum ferrite-sorbitol (LFOCo-So) and lanthanum ferrite-mannitol (LFOCo-Mo) were investigated through Ultraviolet–Visible (UV–Vis),...
-
Kriging Models for Microwave Filters
PublicationSurrogate modeling of microwave filters’ response is discussed. In particular, kriging is used to model either the scattering parameters of the filter or the rational representation of the filter’s characteristics. Surrogate models for these two variants of kriging are validated in solving a microwave filter optimization problem. A clear advantage of surrogate models based on the rational representation over the models based on scattering...
-
Normalized Partial Scattering Cross Section for Performance Evaluation of Low-Observability Scattering Structures
PublicationThe development of diffusion metasurfaces created new opportunities to elevate the stealthiness of combat aircraft. Despite the potential significance of metasurfaces, their rigorous design methodologies are still lacking, especially in the context of meticulous control over the scattering of electromagnetic (EM) waves through geometry parameter tuning. Another practical issue is insufficiency of the existing performance metrics,...
-
Simulating coherent light propagation in a random scattering materials using the perturbation expansion
PublicationMultiple scattering of a coherent light plays important role in the optical metrology. Probably the most important phenomenon caused by multiple scattering are the speckle patterns present in every optical imaging method based on coherent or partially coherent light illumination. In many cases the speckle patterns are considered as an undesired noise. However, they were found useful in various subsurface imaging methods such as...
-
Application of the J-matrix method to multichannel scattering
PublicationIn this contribution we describe the multichannel extension to the nonrelativistic J-matrix method, and present differential cross sections for scattering of slow electrons from Argon atoms. Nonrelativistic phase shifts, then the S-matrix and the cross sections have been calculated using newly developed Fortran code, JMATRIX-MULTI.We applied the model Hartree-Fock potential as the scattering potential, which was truncated in the...
-
A spectroscopic study of the cis/trans-isomers of penta-2,4-dienoic acid attached to gold nanoclusters
PublicationIn this theoretical work, we present a spectroscopic analysis of the cis/trans-isomers of a molecular switch, penta-2,4-dienoic acid, attached to gold clusters of different size (1, 2 and 20 gold atoms). We have simulated 4 different spectroscopic techniques: Infrared spectroscopy, normal Raman scattering, absorption spectra and resonance Raman scattering. We discuss how the position and the conformation of the molecule determine...
-
Magnetic switching of Kerker scattering in spherical microresonators
PublicationMagneto-optical materials have become a key tool in functional nanophotonics, mainly due to their ability to offer active tuning between two different operational states in subwavelength structures. In the long-wavelength limit, such states may be considered as the directional forward- and back-scattering operations, due to the interplay between magnetic and electric dipolar modes, which act as equivalent Huygens sources. In this...
-
An Analysis of Cylindrical Posts of Arbitrary Convex Cross Sections Located in Waveguide Junctions with the Use of Field Matching Method
PublicationA problem of electromagnetic wave scattering from cylindrical posts of arbitrary cross section located in waveguide junction is presented. The method of analysis is based on the direct field matching technique. Multimode scattering matrices of every section of waveguide junction are calculated and cascading procedure is utilized to investigate the whole structure. The results are verified by comparing them with those obtained from...
-
Hybrid Analysis of Structures Composed of Axially Symmetric Objects
Publication— A hybrid method for the scattering problems in shielded and open structures is presented. The procedure is based on the combination of body-of-revolution involving finite-element methods with impedance matrix formulation and the mode-matching technique, which can be utilized for the analysis of structures with axially symmetrical scatterers. In order to confirm the validity and efficiency of the proposed approach, a few examples...
-
Finite-difference time-domain analyses of active cloaking for electrically-large objects
PublicationInvisibility cloaking devices constitute a unique and potentially disruptive technology, but only if they can work over broad bandwidths for electrically-large objects. So far, the only known scheme that allows for broadband scattering cancellation from an electrically-large object is based on an active implementation where electric and magnetic sources are deployed over a surface surrounding the object, but whose ‘switching on’...
-
Scattering and Propagation Analysis for the Multilayered Structures Based on Field Matching Technique
PublicationA semi-analytical method is employed to the analysis of scattering and guiding problems in multilayer dielectric structures. The approach allows to investigate objects with arbitrary convex cross section and is based on the direct field matching technique involving the usage of the field projection at the boundary on a fixed set of orthogonal basis functions. For the scattering problems the scattered field in the far zone is calculated...
-
Numerical modeling of sound intensity distributions around acoustic transducer
PublicationThe aim of this research study is to measure, simulate and compare sound intensity distribution generated by the acoustic transducers of the loudspeaker. The comparison of the gathered data allows for validating the numerical model of the acoustic radiation. An accurate model of a sound source is necessary in mathematical modeling of the sound field distribution near the scattering obstacles. An example of such obstacle is a human...
-
A reliable synthesis of discrete-time H-inf control. Part I: basic theorems and J-lossless conjugators
PublicationThe paper gives a basis for solving many problems of numerically reliable synthesis of sub-optimal discrete-time control in H-inf. The approach is based on J-lossless factorisation of the delta-domain chain-scattering description of continuous-time plants being controlled. Relevant properties of poles and zeroes of chain-scattering models are given. Necessary and sufficient conditions for the existence of stabilising J-lossless...
-
A Stand for Measurement and Prediction of Scattering Properties of Diffusers
PublicationIn this paper we present a set of solutions which may be used for prototyping and simulation of acoustic scattering devices. A system proposed is capable of measuring sound field. Also a way to use an open source solution for simulation of scattering phenomena occurring in proximity of acoustic diffusers is shown. The result of our work are measurement procedure and a prototype of the simulation script based on FEniCS - an open source...
-
Automatic system for optical parameters measurements of biological tissues
PublicationIn this paper a system allowing execution of automatic measurements of optical parameters of scattering materials in an efficient and accurate manner is proposed and described. The system is designed especially for measurements of biological tissues including phantoms, which closely imitate optical characteristics of real tissue. The system has modular construction and is based on the ISEL system, luminance and color meter and...
-
Calculation methods of interaction of electromagnetic waves with objects of complex geometries
PublicationModeling of the electromagnetic interaction with different homogeneous or inhomo-geneous objects is a fundamental and important problem. It is relatively easy to solve Maxwellequations analytically when the scattering object is spherical or cylindrical, for example. How-ever, when it loses these properties all that is left for us is to useapproximation models, to ac-quire the solution we need. Modeling of complex, non-spherical,...
-
A new methof for identyfication of RTS noise
PublicationIn the paper a new method, called the Noise Scattering Pattern (NSP) method, for RTS noise identyfication in a noise signal is presented. Examples of patterns of the NSP method are included.
-
Low-energy positron scattering from gas-phase tetrahydrofuran: A quantum treatment of the dynamics and a comparison with experiments
PublicationIn this paper we report new quantum calculations of the dynamics for low-energy positrons interacting with gaseous molecules of tetrahydrofuran. The new quantum scattering cross sections are differential and integral cross sections at collision energies between 1.0 and 25.0 eV and include a careful treatment of the additional effects on the scattering process brought about by the permanent dipole moment of the target molecule....
-
Efficient Fabry-Perot Open Resonator Analysis by the use of a Scattering Matrix Method
PublicationIn this paper a comparative study of the computational efficiency of two modeling methods applied to the analysis of the plano- and double-concave Fabry-Perot open resonators is presented. In both numerical approaches, a scattering matrix method was applied, which allows splitting the analysis of the resonator into several sections, including the one with a spherical mirror, which requires the largest computing resources. Two modeling...
-
Surrogate-Assisted Design of Checkerboard Metasurface for Broadband Radar Cross-Section Reduction
PublicationMetasurfaces have been extensively exploited in stealth applications to reduce radar cross section (RCS). They rely on the manipulation of backward scattering of electromagnetic (EM) waves into various oblique angles. However, arbitrary control of the scattering properties poses a significant challenge as a design task. Yet it is a principal requirement for making RCS reduction possible. This article introduces a surrogate-based...
-
Solution of coupled integral equations for quantum scattering in the presence of complex potentials
PublicationIn this paper, we present a method to compute solutions of coupled integral equations for quantum scattering problems in the presence of a complex potential. We show how the elastic and absorption cross sections can be obtained from the numerical solution of these equations in the asymptotic region at large radial distances.