Search results for: PREDICTIVE SYSTEMS
-
Empirical analysis of tree-based classification models for customer churn prediction
PublicationCustomer churn is a vital and reoccurring problem facing most business industries, particularly the telecommunications industry. Considering the fierce competition among telecommunications firms and the high expenses of attracting and gaining new subscribers, keeping existing loyal subscribers becomes crucial. Early prediction of disgruntled subscribers can assist telecommunications firms in identifying the reasons for churn and...
-
Mitochondrial DNA copy number and trimethylamine levels in the blood: New insights on cardiovascular disease biomarkers
PublicationAmong cardiovascular disease (CVD) biomarkers, the mitochondrial DNA copy number (mtDNAcn) is a promising candidate. A growing attention has been also dedicated to trimethylamine-N-oxide (TMAO), an oxidative derivative of the gut metabolite trimethylamine (TMA). With the aim to identify biomarkers predictive of CVD, we investigated TMA, TMAO, and mtDNAcn in a population of 389 coronary artery disease...
-
Two-Level Multivariable Control System of Dissolved Oxygen Tracking and Aeration System for Activated Sludge Processes
PublicationThe problem of tracking dissolved oxygen is one of the most complex and fundamental issues related to biological processes. The dissolved oxygen level in aerobic tanks has significant influence on behaviour and activity of microorganism inhabiting the plant. Aerated tanks are supplied with air from an aeration system (blowers, pipes, throttling valves, diffusers). It is a complex dynamic system governed by nonlinear hybrid dynamics....
-
On the use of the cumulative strain energy density for fatigue life assessment in advanced high-strength steels
PublicationIn this paper, the applicability of the cumulative strain energy density is explored as a fatigue indicator parameter for advanced high-strength steels subjected to strain-controlled conditions. Firstly, the cyclic stress-strain responses of nine steels, selected from three multiphase families, encompassing different elemental compositions and different heat treatment routes, were studied. Then, the predictive capabilities of the...
-
A Machine Learning Approach for Estimating Overtime Allocation in Software Development Projects
PublicationOvertime planning in software projects has traditionally been approached with search-based multi-objective optimization algorithms. However, the explicit solutions produced by these algorithms often lack applicability and acceptance in the software industry due to their disregard for project managers' intuitive knowledge. This study presents a machine learning model that learns the preferred overtime allocation patterns from solutions...
-
Comparison of different one-parameter damage laws and local stress-strain approaches in multiaxial fatigue life assessment of notched components
PublicationThis paper aims to compare the predictive capabilities of different one-parameter damage laws and local stress-strain approaches to assess the fatigue lifetime in notched components subjected to proportional bending-torsion loading. The tested fatigue damage parameters are defined using well-known stress-based, strain-based, SWT-based and energy-based relationships. Multiaxial cyclic plasticity at the notch-controlled process zone...
-
Finding the Right Solvent: A Novel Screening Protocol for Identifying Environmentally Friendly and Cost-Effective Options for Benzenesulfonamide
PublicationThis study investigated the solubility of benzenesulfonamide (BSA) as a model compound using experimental and computational methods. New experimental solubility data were collected in the solvents DMSO, DMF, 4FM, and their binary mixtures with water. The predictive model was constructed based on the best-performing regression models trained on available experimental data, and their hyperparameters were optimized using a newly...
-
Numbers, Please: Power- and Voltage-Related Indices in Control of a Turbine-Generator Set
PublicationThis paper discusses the proper selection and interpretation of aggregated control performance indices values mirroring the quality of electrical energy generation by a turbine-generator set cooperating with a power system. Typically, a set of basic/classical and individual indices is used in energy engineering to ensure the mirroring feature and is related to voltage, frequency and active or reactive power deviations from their...
-
High-resolution fire danger forecast for Poland based on the Weather Research and Forecasting Model
PublicationDue to climate change and associated longer and more frequent droughts, the risk of forest fires increases. To address this, the Institute of Meteorology and Water Management implemented a system for forecasting fire weather in Poland. The Fire Weather Index (FWI) system, developed in Canada, has been adapted to work with meteorological fields derived from the high-resolution (2.5 km) Weather Research and Forecasting (WRF) model....
-
Towards Rational Biosurfactant Design—Predicting Solubilization in Rhamnolipid Solutions
PublicationThe efficiency of micellar solubilization is dictated inter alia by the properties of the solubilizate, the type of surfactant, and environmental conditions of the process. We, therefore, hypothesized that using the descriptors of the aforementioned features we can predict the solubilization efficiency, expressed as molar solubilization ratio (MSR). In other words, we aimed at creating a model to find the optimal surfactant and...
-
Triangulation-based Constrained Surrogate Modeling of Antennas
PublicationDesign of contemporary antenna structures is heavily based on full-wave electromagnetic (EM) simulation tools. They provide accuracy but are CPU-intensive. Reduction of EM-driven design procedure cost can be achieved by using fast replacement models (surrogates). Unfortunately, standard modeling techniques are unable to ensure sufficient predictive power for real-world antenna structures (multiple parameters, wide parameter ranges,...
-
Data science: Not one size fits all. When building models, you need to get your claim categories right from the beginning
PublicationWhen it comes to insurance modelling, there is plenty of material and training on how to build statistical models. We can use these resources to learn about generalised linear models and gradient boosting machines (see feature, overleaf), understanding their advantages and weak points. The same applies to different transformations and techniques, such as splines, variables mapping, geographical classification, finding significant...
-
Digital Transformation and Its Influence on Sustainable Manufacturing and Business Practices
PublicationThe paper focuses on the relationship between businesses and digital transformation, and how digital transformation has changed manufacturing in several ways. Aspects like Cloud Computing, vertical and horizontal integration, data communication, and the internet have contributed to sustainable manufacturing by decentralizing supply chains. In addition, digital transformation inventions such as predictive analysis and big data analytics...
-
Exploring the influence of personal factors on physiological responses to mental imagery in sport
PublicationImagery is a well-known technique in mental training which improves performance efficiency and influences physiological arousal. One of the biomarkers indicating the amount of physiological arousal is skin conductance level (SCL). The aim of our study is to understand how individual differences in personality (e.g. neuroticism), general imagery and situational sport anxiety are linked to arousal measuring with SCL in situational...
-
Predicting Value of Binding Constants of Organic Ligands to Beta-Cyclodextrin: Application of MARSplines and Descriptors Encoded in SMILES String
PublicationThe quantitative structure–activity relationship (QSPR) model was formulated to quantify values of the binding constant (lnK) of a series of ligands to beta–cyclodextrin (β-CD). For this purpose, the multivariate adaptive regression splines (MARSplines) methodology was adopted with molecular descriptors derived from the simplified molecular input line entry specification (SMILES) strings. This approach allows discovery of regression...
-
Forewarned Is Forearmed: Machine Learning Algorithms for the Prediction of Catheter-Induced Coronary and Aortic Injuries
PublicationCatheter-induced dissections (CID) of coronary arteries and/or the aorta are among the most dangerous complications of percutaneous coronary procedures, yet the data on their risk factors are anecdotal. Logistic regression and five more advanced machine learning techniques were applied to determine the most significant predictors of dissection. Model performance comparison and feature importance ranking were evaluated. We identified...
-
Consumer Bankruptcy Prediction Using Balanced and Imbalanced Data
PublicationThis paper examines the usefulness of logit regression in forecasting the consumer bankruptcy of households using an imbalanced dataset. The research on consumer bankruptcy prediction is of paramount importance as it aims to build statistical models that can identify consumers in a difficult financial situation that may lead to consumer bankruptcy. In the face of the current global pandemic crisis, the future of household finances...
-
Synthesis, Molecular Structure, Metabolic Stability and QSAR Studies of a Novel Series of Anticancer N-Acylbenzenesulfonamides
PublicationA series of novel N-acyl-4-chloro-5-methyl-2-(R1-methylthio)benzenesulfonamides 18–47 have been synthesized by the reaction of N-[4-chloro-5-methyl-2-(R1-methylthio) benzenesulfonyl]cyanamide potassium salts with appropriate carboxylic acids. Some of them showed anticancer activity toward the human cancer cell lines MCF-7, HCT-116 and HeLa, with the growth percentages (GPs) in the range from 7% to 46%. Quantitative structure-activity relationship...
-
Design-oriented computationally-efficient feature-based surrogate modelling of multi-band antennas with nested kriging
PublicationDesign of modern antenna structures heavily depends on electromagnetic (EM) simulation tools. EM analysis provides reliable evaluation of increasingly complex designs but tends to be CPU intensive. When multiple simulations are needed (e.g., for parameters tuning), the aggregated simulation cost may become a serious bottleneck. As one possible way of mitigating the issue, the recent literature fosters utilization of faster representations,...
-
Low-cost data-driven modelling of microwave components using domain confinement and PCA-based dimensionality reduction
PublicationFast data-driven surrogate models can be employed as replacements of computationally demanding full-wave electromagnetic simulations to facilitate the microwave design procedures. Unfortunately, practical application of surrogate modelling is often hindered by the curse of dimensionality and/or considerable nonlinearity of the component characteristics. This paper proposes a simple yet reliable approach to cost-efficient modelling...
-
Synthesis, Molecular Structure, Anticancer Activity, and QSAR Study of N-(aryl/heteroaryl)-4-(1H-pyrrol-1-yl)Benzenesulfonamide Derivatives
PublicationA series of N-(aryl/heteroaryl)-4-(1H-pyrrol-1-yl)benzenesulfonamides were synthesized from 4-amino-N-(aryl/heteroaryl)benzenesulfonamides and 2,5-dimethoxytetrahydrofuran. All the synthesized compounds were evaluated for their anticancer activity on HeLa, HCT-116, and MCF-7 human tumor cell lines. Compound 28, bearing 8-quinolinyl moiety, exhibited the most potent anticancer activity against the HCT-116, MCF-7, and HeLa cell lines,...
-
Consumer Bankruptcy Prediction Using Balanced and Imbalanced Data
PublicationThis paper examines the usefulness of logit regression in forecasting the consumer bankruptcy of households using an imbalanced dataset. The research on consumer bankruptcy prediction is of paramount importance as it aims to build statistical models that can identify consumers in a difficult financial situation that may lead to consumer bankruptcy. In the face of the current global pandemic crisis, the future of household finances...
-
Systematic Literature Review for Emotion Recognition from EEG Signals
PublicationResearchers have recently become increasingly interested in recognizing emotions from electroencephalogram (EEG) signals and many studies utilizing different approaches have been conducted in this field. For the purposes of this work, we performed a systematic literature review including over 40 articles in order to identify the best set of methods for the emotion recognition problem. Our work collects information about the most...
-
Systematic Literature Review for Emotion Recognition from EEG Signals
PublicationResearchers have recently become increasingly interested in recognizing emotions from electroencephalogram (EEG) signals and many studies utilizing different approaches have been conducted in this field. For the purposes of this work, we performed a systematic literature review including over 40 articles in order to identify the best set of methods for the emotion recognition problem. Our work collects information about the most...
-
High performance super-twisting sliding mode control for a maritime autonomous surface ship (MASS) using ADP-Based adaptive gains and time delay estimation
PublicationThis research addresses two kinds of problems related to optimal trajectory tracking of a Maritime Autonomous Surface Ship (MASS): those caused by the time-varying external disturbances including winds, waves and ocean currents as well as those resulting from inherent dynamical uncertainties. As the paper shows, an accurate and robust optimal controller can successfully deal with both issues. An improved Optimal Adaptive Super-Twisting...
-
High performance super-twisting sliding mode control for a maritime autonomous surface ship (MASS) using ADP-Based adaptive gains and time delay estimation
PublicationThis research addresses two kinds of problems related to optimal trajectory tracking of a Maritime Autonomous Surface Ship (MASS): those caused by the time-varying external disturbances including winds, waves and ocean currents as well as those resulting from inherent dynamical uncertainties. As the paper shows, an accurate and robust optimal controller can successfully deal with both issues. An improved Optimal Adaptive Super-Twisting...
-
User-assisted methodology targeted for building structure interpretable QSPR models for boosting CO2 capture with ionic liquids
PublicationTask-specific ionic liquid (IL) is an emerging class of compounds that may be environmentally friendly. Properly selected, these compounds may be green alternative to amine solutions and can replace them in post-combustion carbon dioxide (CO2) capture processes on an industrial scale. However, owing to the vast diversity of ions and their possible combinations, laboratory research is time consuming and expensive. Therefore, computational...
-
Prediction of metal deformation due to line heating; an alternative method of mechanical bending, based on artificial neural network approach
PublicationLine heating is one of the alternative methods of forming metals and this kind of forming uses the heating torch as a source of heat input. During the process, many parameters are considered like the size of the substrate, thickness, cooling method, source power intensity, the travel speed of the power source, the sequence of heating, and so on. It is important to analyze the factors affecting the...
-
Implementacja algorytmu regulacji predykcyjnej MPC w sterownikach programowalnych
PublicationSterowniki programowalne PLC (ang. Programmable Logic Controllers) są główną przemysłową platformą implementacji algorytmów sterowania bezpośredniego. Standardowo producenci PLC udostępniają programistom jedynie podstawowe algorytmy sterowania. W niniejszym artykule rozważana jest implementacja w PLC zaawansowanej metody sterowania – algorytmu MAC/MPC (ang. Model Algorithmic Control/Model Predictive Control) ze względu na jego...
-
Determination of the active ingredient in pharmaceutical gel formulation by NIR spectroscopy
PublicationPharmaceuticals of their intended must be thoroughly controlled. The traditional analytical methods are very costly and time consuming. NIR spectroscopy allows to analyze pharmaceutical materials very quickly and with very low costs. First pharmaceutical applications of the NIR spectroscopy appeared with some incuriosity in the late 1960s. Application of NIR in the contemporary pharmaceutical industry is very large. The most common...
-
Porównanie cystouretrografii mikcyjnej i sonocystografii mikcyjnej z użyciem ultrasonograficznego środka kontrastującego drugiej generacji w badaniu prospektywnym
PublicationThe invasiveness and exposure to radiation in voiding cystourethrography led to the introduction of alternative methods of diagnosis of vesicoureteral reflux, including contrast enhanced voiding urosonography. While there is a limited number of studies comparing these methods using new generation ultrasound contrast agents, none of them compared both methods simultaneously. This study is aimed at assessing agreement between contrast...
-
Antenna Modeling Using Variable-Fidelity EM Simulations and Constrained Co-Kriging
PublicationUtilization of fast surrogate models has become a viable alternative to direct handling of fullwave electromagnetic (EM) simulations in EM-driven design. Their purpose is to alleviate the difficulties related to high computational cost of multiple simulations required by the common numerical procedures such as parametric optimization or uncertainty quantification. Yet, conventional data-driven (or approximation) modeling techniques...
-
Implementation of Hierarchical Control of Drinking Water Supply System
PublicationThe paper presents the outline of the didactical project of a complex computer controlled system realized by the first degree students of the Automatics and Robotics on the Faculty of Electrical and Control Engineering (FoEaCE) in Gdansk University of Technology (GUT). The synthesis, implementation and analysis of a multilayer hierarchical control system for drinking water supply system (DWSS) are main topics of that project. The...
-
Synthesis, Characterization and Biological Investigations of Half-Sandwich Ruthenium(II) Complexes Containing Benzimidazole Moiety
PublicationHalf-sandwich Ru(II) complexes belong to group of biologically active metallo-compounds with promising antimicrobial and anticancer activity. Herein, we report the synthesis and characteri- zation of arene ruthenium complexes containing benzimidazole moiety, namely, [(η6-p-cymene)RuC l(bimCOO)] (1) and [(η6-p-cymene)RuCl2(bim)] (2) (where bimCOO = benzimidazole-2-carboxylate and bim = 1-H-benzimidazole). The compounds were characterized...
-
Reduced-Cost Microwave Modeling Using Constrained Domains and Dimensionality Reduction
PublicationDevelopment of modern microwave devices largely exploits full-wave electromagnetic (EM) simulations. Yet, simulation-driven design may be problematic due to the incurred CPU expenses. Addressing the high-cost issues stimulated the development of surrogate modeling methods. Among them, data-driven techniques seem to be the most widespread owing to their flexibility and accessibility. Nonetheless, applicability of approximation-based...
-
Data-Driven Modeling of Mechanical Properties of Fiber-Reinforced Concrete: A Critical Review
PublicationFiber-reinforced concrete (FRC) is extensively used in diverse structural engineering applications, and its mechanical properties are crucial for designing and evaluating its performance. The compressive, flexural, splitting tensile, and shear strengths of FRCs are among the most important attributes, which have been discussed more extensively than other properties. The accurate prediction of these properties, which are required...
-
Exploring the Role of Social Media Use Motives, Psychological Well-Being, Self-Esteem, and Affect in Problematic Social Media Use
PublicationGiven recent advances in technology, connectivity, and the popularity of social media platforms, recent literature has devoted great attention to problematic Facebook use. However, exploring the potential predictors of problematic social media use beyond Facebook use has become paramount given the increasing popularity of multiple alternative platforms. In this study, a sample of 584 social media users (Mage = 32.28 years; 67.81%...
-
New, fast and cheap prediction tests for BRCA1 gene mutations identification in clinical samples.
PublicationDespite significant progress in cancer therapy, cancer is still the second cause of mortality in the world. The necessity to make quick therapeutic decisions forces the development of procedures allowing to obtain a reliable result in a quick and unambiguous manner. Currently, detecting predictive mutations, including BRCA1, is the basis for effectively treating advanced breast cancer. Here, we present new insight on gene mutation...
-
Platelet RNA Sequencing Data Through the Lens of Machine Learning
PublicationLiquid biopsies offer minimally invasive diagnosis and monitoring of cancer disease. This biosource is often analyzed using sequencing, which generates highly complex data that can be used using machine learning tools. Nevertheless, validating the clinical applications of such methods is challenging. It requires: (a) using data from many patients; (b) verifying potential bias concerning sample collection; and (c) adding interpretability...
-
Optimal Design of Transmitarray Antennas via Low-Cost Surrogate Modelling
PublicationOver the recent years, reflectarrays and transmitarrays have been drawing a considerable attention due to their attractive features, including a possibility of realizing high gain and pencil-like radiation patterns without the employment of complex feeding networks. Among the two, transmitarrays seem to be superior over reflectarrays in terms of achieving high radiation efficiency without the feed blockage. Notwithstanding, the...
-
Advanced Supervisory Control System Implemented at Full-Scale WWTP—A Case Study of Optimization and Energy Balance Improvement
PublicationIn modern and cost-eective Wastewater Treatment Plants (WWTPs), processes such as aeration, chemical feeds and sludge pumping are usually controlled by an operating system integrated with online sensors. The proper verification of these data-driven measurements and the control of different unit operations at the same time has a strong influence on better understanding and accurately optimizing the biochemical processes at WWTP—especially...
-
Reliable data-driven modeling of high-frequency structures by means of nested kriging with enhanced design of experiments
PublicationData-driven (or approximation) surrogate models have been gaining popularity in many areas of engineering and science, including high-frequency electronics. They are attractive as a way of alleviating the difficulties pertinent to high computational cost of evaluating full-wave electromagnetic (EM) simulation models of microwave, antenna, and integrated photonic components and devices. Carrying out design tasks that involve massive...
-
Coupling of Blood Pressure and Subarachnoid Space Oscillations at Cardiac Frequency Evoked by Handgrip and Cold Tests: A Bispectral Analysis
PublicationThe aim of the study was to assess blood pressure–subarachnoid space (BP–SAS) width coupling properties using time–frequency bispectral analysis based on wavelet transforms during handgrip and cold tests. The experiments were performed on a group of 16 healthy subjects (F/M; 7/9) of the mean age 27.2 ± 6.8 years and body mass index of 23.8 ± 4.1 kg/m². The sequence of challenges was first handgrip and then cold test. The handgrip...
-
Redundantly Actuated 3RRR Parallel Planar Manipulator - Numerical Analyses of its Dynamics Sensitivity on Modifications of its Platform’s Inertia Parameters
PublicationIn the paper, numerical analyses, as well as dynamics of a complex mechanism, are presented. Two objectives are crucial for the paper: inverse dynamic model is needed (dedicated to be use in the model predictive controller); an identification method is searched (some trajectory parameters are controlled, when specific trajectory is tracked under an open-loop model-based control), as selected parameters must be identified for the...
-
Age, frequency of volunteering, and Present-Hedonistic time perspective predict donating items to people in need, but not money to combat COVID-19 during lock-down
PublicationRestrictions due to COVID-19 necessitated staying at home, but in some cases, encouraged charitable behavior, e.g., donating items to people in need (e.g., clothes, food), or money to support combatting COVID-19. Drawing on the previous findings regarding helping during disastrous situations and roles of time perspective in helping behaviors, the study tested the predictive value of age, gender, previous volunteering, altruistic...
-
Variable-fidelity shape optimization of dual-rotor wind turbines
PublicationPurpose Dual-rotor wind turbines (DRWTs) are a novel type of wind turbines that can capture more power than their single-rotor counterparts. Because their surrounding flow fields are complex, evaluating a DRWT design requires accurate predictive simulations, which incur high computational costs. Currently, there does not exist a design optimization framework for DRWTs. Since the design optimization of DRWTs requires numerous model...
-
Experimental investigations on adiabatic frictional pressure drops of R134a during flow in 5mm diameter channel
PublicationThe article presents detailed two-phase adiabatic pressure drops data for refrigerant R134a at a saturation pressure of 5.5 bar corresponding to the saturation temperature of 19.4 °C. Study cases have been set for a mass flux varying from 100 to 500 kg/m2 s. The frictional pressure drop was characterized for the refrigerant R134a, for vapor qualities ranging from 0 to 1. Long-time thermal stability of test facility allowed to gather...
-
Cost-Efficient Surrogate Modeling of High-Frequency Structures Using Nested Kriging with Automated Adjustment of Model Domain Lateral Dimensions
PublicationSurrogate models are becoming popular tools of choice in mitigating issues related to the excessive cost of electromagnetic (EM)-driven design of high-frequency structures. Among available techniques, approximation modeling is by far the most popular due to its versatility. In particular, the surrogates are exclusively based on the sampled simulation data with no need to involve engineering insight or problem-specific knowledge....
-
Cost‐efficient performance‐driven modelling of multi‐band antennas by variable‐fidelity electromagnetic simulations and customized space mapping
PublicationElectromagnetic (EM) simulations have become an indispensable tool in the design of contemporary antennas. EM‐driven tasks, for example, parametric optimization, entail considerable computational efforts, which may be reduced by employing surrogate models. Yet, data‐driven modelling of antenna characteristics is largely hindered by the curse of dimensionality. This may be addressed using the recently reported domain‐confinement...
-
Magnetic Signature Description of Ellipsoid-Shape Vessel Using 3D Multi-Dipole Model Fitted on Cardinal Directions
PublicationThe article presents a continuation of the research on the 3D multi-dipole model applied to the reproduction of magnetic signatures of ferromagnetic objects. The model structure has been modified to improve its flexibility - model parameters determined by optimization can now be located in the cuboid contour representing the object's hull. To stiffen the model, the training dataset was expanded to data collected from all four cardinal...