Search results for: NEURAL NETWORKS - Bridge of Knowledge

Search

Search results for: NEURAL NETWORKS

Search results for: NEURAL NETWORKS

  • Evidence for consolidation of neuronal assemblies after seizures in humans

    Publication
    • M. R. Bower
    • M. Stead
    • R. S. Bower
    • M. T. Kucewicz
    • V. Sulc
    • J. Cymbalnik
    • B. H. Brinkmann
    • V. Vasoli
    • E. K. ST.Louis
    • F. Meyer... and 2 others

    - Journal of Neuroscience - Year 2015

    The establishment of memories involves reactivation of waking neuronal activity patterns and strengthening of associated neural circuits during slow-wave sleep (SWS), a process known as "cellular consolidation" (Dudai and Morris, 2013). Reactivation of neural activity patterns during waking behaviors that occurs on a timescale of seconds to minutes is thought to constitute memory recall (O'Keefe and Nadel, 1978), whereas consolidation...

    Full text available to download

  • Toward Intelligent Vehicle Intrusion Detection Using the Neural Knowledge DNA

    Publication

    - CYBERNETICS AND SYSTEMS - Year 2018

    In this paper, we propose a novel intrusion detection approach using past driving experience and the neural knowledge DNA for in-vehicle information system security. The neural knowledge DNA is a novel knowledge representation method designed to support discovering, storing, reusing, improving, and sharing knowledge among machines and computing systems. We examine our approach for classifying malicious vehicle control commands...

    Full text available to download

  • Artificial Neural Network in Forecasting the Churn Phenomena Among Costumers of IT and Power Supply Services

    Publication

    This paper presents an attempt to use an artificial neural network to investigate the churn phenomenon among the customers of a telecommunications operator. An attempt was made to create a data model based on the customer lifetime value (CLV) rather than on activity alone. A multilayered artificial neural network was used for the experiments. The results yielded a 99% successful identification rate for customers in no danger of...

    Full text to download in external service

  • Direct brain stimulation modulates encoding states and memory performance in humans

    Publication
    • Y. Ezzyat
    • J. E. Kragel
    • J. F. Burke
    • D. F. Levy
    • A. Lyalenko
    • P. Wanda
    • L. O'Sullivan
    • K. B. Hurley
    • S. Busygin
    • I. Pedisich... and 16 others

    - CURRENT BIOLOGY - Year 2017

    People often forget information because they fail to effectively encode it. Here, we test the hypothesis that targeted electrical stimulation can modulate neural encoding states and subsequent memory outcomes. Using recordings from neurosurgical epilepsy patients with intracranially implanted electrodes, we trained multivariate classifiers to discriminate spectral activity during learning that predicted remembering from forgetting,...

    Full text available to download

  • Detecting type of hearing loss with different AI classification methods: a performance review

    Publication
    • M. Kassjański
    • M. Kulawiak
    • T. Przewoźny
    • D. Tretiakow
    • J. Kuryłowicz
    • A. Molisz
    • K. Koźmiński
    • A. Kwaśniewska
    • P. Mierzwińska-Dolny
    • M. Grono

    - Year 2023

    Hearing is one of the most crucial senses for all humans. It allows people to hear and connect with the environment, the people they can meet and the knowledge they need to live their lives to the fullest. Hearing loss can have a detrimental impact on a person's quality of life in a variety of ways, ranging from fewer educational and job opportunities due to impaired communication to social withdrawal in severe situations. Early...

    Full text to download in external service

  • Intelligent Autonomous Robot Supporting Small Pets in Domestic Environment

    In this contribution, we present preliminary results of the student project aimed at the development of an intelligent autonomous robot supporting small pets in a domestic environment. The main task of this robot is to protect a freely moving small pets against accidental stepping on them by home residents. For this purpose, we have developed the mobile robot which follows a pet and makes an alarm signal when a human is approaching....

    Full text available to download

  • 1D convolutional context-aware architectures for acoustic sensing and recognition of passing vehicle type

    Publication

    A network architecture that may be employed to sensing and recognition of a type of vehicle on the basis of audio recordings made in the proximity of a road is proposed in the paper. The analyzed road traffic consists of both passenger cars and heavier vehicles. Excerpts from recordings that do not contain vehicles passing sounds are also taken into account and marked as ones containing silence....

  • Artificial neural network based fatigue life assessment of friction stir welding AA2024-T351 aluminum alloy and multi-objective optimization of welding parameters

    Publication
    • R. Masoudi Nejad
    • N. Sina
    • D. Ghahremani Moghadam
    • R. Branco
    • W. Macek
    • F. Berto

    - INTERNATIONAL JOURNAL OF FATIGUE - Year 2022

    In this paper, the fracture behavior and fatigue crack growth rate of the 2024-T351 aluminum alloy has been investigated. At first, the 2024-T351 aluminum alloys have been welded using friction stir welding procedure and the fracture toughness and fatigue crack growth rate of the CT specimens have been studied experimentally based on ASTM standards. After that, in order to predict fatigue crack growth rate and fracture toughness,...

    Full text available to download

  • Generalised heart rate statistics reveal neurally mediated homeostasis transients

    Publication
    • D. Makowiec
    • B. Graff
    • W. Miklaszewski
    • D. Wejer
    • A. Kaczkowska
    • S. Budrejko
    • Z. R. Struzik

    - EPL-EUROPHYS LETT - Year 2015

    Distributions of accelerations and decelerations, obtained from increments of heart rate recorded during a head-up tilt table (HUTT) test provide short-term characterization of the complex cardiovascular response to a rapid controlled dysregulation of homeostasis. A generalised statistic is proposed for evaluating the neural reflexes responsible for restoring the homeostatic dynamics. An evaluation of the effects on heart rate...

    Full text to download in external service

  • Toward Intelligent Recommendations Using the Neural Knowledge DNA

    Publication

    - CYBERNETICS AND SYSTEMS - Year 2021

    In this paper we propose a novel recommendation approach using past news click data and the Neural Knowledge DNA (NK-DNA). The Neural Knowledge DNA is a novel knowledge representation method designed to support discovering, storing, reusing, improving, and sharing knowledge among machines and computing systems. We examine our approach for news recommendation tasks on the MIND benchmark dataset. By taking advantages of NK-DNA, deep...

    Full text available to download

  • Dissecting gamma frequency activities during human memory processing

    Publication
    • M. T. Kucewicz
    • B. M. Berry
    • V. Kremen
    • B. H. Brinkmann
    • M. R. Sperling
    • B. C. Jobst
    • R. E. Gross
    • B. Lega
    • S. A. Sheth
    • J. M. Stein... and 6 others

    - Brain: A Journal of Neurology - Year 2017

    Gamma frequency activity (30-150 Hz) is induced in cognitive tasks and is thought to reflect underlying neural processes. Gamma frequency activity can be recorded directly from the human brain using intracranial electrodes implanted in patients undergoing treatment for drug-resistant epilepsy. Previous studies have independently explored narrowband oscillations in the local field potential and broadband power increases. It is not...

    Full text to download in external service

  • Efficiency of Artificial Intelligence Methods for Hearing Loss Type Classification: an Evaluation

    Publication
    • M. Kassjański
    • M. Kulawiak
    • T. Przewoźny
    • D. Tretiakow
    • J. Kuryłowicz
    • A. Molisz
    • K. Koźmiński
    • A. Kwaśniewska
    • P. Mierzwińska-Dolny
    • M. Grono

    - Journal of Automation, Mobile Robotics and Intelligent Systems - JAMRIS - Year 2024

    The evaluation of hearing loss is primarily conducted by pure tone audiometry testing, which is often regarded as golden standard for assessing auditory function. If the presence of hearing loss is determined, it is possible to differentiate between three types of hearing loss: sensorineural, conductive, and mixed. This study presents a comprehensive comparison of a variety of AI classification models, performed on 4007 pure tone...

    Full text to download in external service

  • Neural network agents trained by declarative programming tutors

    Publication

    This paper presents an experimental study on the development of a neural network-based agent, trained using data generated using declarative programming. The focus of the study is the application of various agents to solve the classic logic task – The Wumpus World. The paper evaluates the effectiveness of neural-based agents across different map configurations, offering a comparative analysis to underline the strengths and limitations...

    Full text to download in external service

  • Dataset Characteristics and Their Impact on Offline Policy Learning of Contextual Multi-Armed Bandits

    Publication

    The Contextual Multi-Armed Bandits (CMAB) framework is pivotal for learning to make decisions. However, due to challenges in deploying online algorithms, there is a shift towards offline policy learning, which relies on pre-existing datasets. This study examines the relationship between the quality of these datasets and the performance of offline policy learning algorithms, specifically, Neural Greedy and NeuraLCB. Our results...

    Full text available to download

  • Adding Interpretability to Neural Knowledge DNA

    Publication

    - CYBERNETICS AND SYSTEMS - Year 2022

    This paper proposes a novel approach that adds the interpretability to Neural Knowledge DNA (NK-DNA) via generating a decision tree. The NK-DNA is a promising knowledge representation approach for acquiring, storing, sharing, and reusing knowledge among machines and computing systems. We introduce the decision tree-based generative method for knowledge extraction and representation to make the NK-DNA more explainable. We examine...

    Full text available to download

  • Hotspot of human verbal memory encoding in the left anterior prefrontal cortex

    Publication

    - EBioMedicine - Year 2022

    Background: Treating memory and cognitive deficits requires knowledge about anatomical sites and neural activities to be targeted with particular therapies. Emerging technologies for local brain stimulation offer attractive therapeutic options but need to be applied to target specific neural activities, at distinct times, and in specific brain regions that are critical for memory formation. Methods: The areas that are critical...

    Full text available to download

  • Driver’s Condition Detection System Using Multimodal Imaging and Machine Learning Algorithms

    To this day, driver fatigue remains one of the most significant causes of road accidents. In this paper, a novel way of detecting and monitoring a driver’s physical state has been proposed. The goal of the system was to make use of multimodal imaging from RGB and thermal cameras working simultaneously to monitor the driver’s current condition. A custom dataset was created consisting of thermal and RGB video samples. Acquired data...

    Full text to download in external service

  • Intra-subject class-incremental deep learning approach for EEG-based imagined speech recognition

    Publication

    - Biomedical Signal Processing and Control - Year 2023

    Brain–computer interfaces (BCIs) aim to decode brain signals and transform them into commands for device operation. The present study aimed to decode the brain activity during imagined speech. The BCI must identify imagined words within a given vocabulary and thus perform the requested action. A possible scenario when using this approach is the gradual addition of new words to the vocabulary using incremental learning methods....

    Full text to download in external service

  • Minimizing Distribution and Data Loading Overheads in Parallel Training of DNN Acoustic Models with Frequent Parameter Averaging

    Publication

    In the paper we investigate the performance of parallel deep neural network training with parameter averaging for acoustic modeling in Kaldi, a popular automatic speech recognition toolkit. We describe experiments based on training a recurrent neural network with 4 layers of 800 LSTM hidden states on a 100-hour corpora of annotated Polish speech data. We propose a MPI-based modification of the training program which minimizes the...

    Full text to download in external service

  • Karol Flisikowski dr inż.

    Karol Flisikowski works as Associate Professor at the Department of Statistics and Econometrics, Faculty of Management and Economics, Gdansk University of Technology. He is responsible for teaching descriptive and mathematical statistics (in Polish and English), as well as scientific research in the field of social statistics. He has been a participant in many national and international conferences, where he has presented the results...

  • Accuracy Investigations of Turbine Blading Neural Models Applied to Thermal and Flow Diagnostics

    Publication

    - Year 2016

    Possibility of replacing computional fluid dynamics simulations by a neural model for fluid flow and thermal diagnostics of steam turbines is investigated. Results of calculations of velocity magnitude of steam for 3D model of the stator of steam turbine is presented.

    Full text to download in external service

  • Analysis of 2D Feature Spaces for Deep Learning-based Speech Recognition

    Publication

    - JOURNAL OF THE AUDIO ENGINEERING SOCIETY - Year 2018

    convolutional neural network (CNN) which is a class of deep, feed-forward artificial neural network. We decided to analyze audio signal feature maps, namely spectrograms, linear and Mel-scale cepstrograms, and chromagrams. The choice was made upon the fact that CNN performs well in 2D data-oriented processing contexts. Feature maps were employed in the Lithuanian word recognition task. The spectral analysis led to the highest word...

  • Neural network model of ship magnetic signature for different measurement depths

    Publication

    This paper presents the development of a model of a corvette-type ship’s magnetic signature using an artificial neural network (ANN). The capabilities of ANNs to learn complex relationships between the vessel’s characteristics and the magnetic field at different depths are proposed as an alternative to a multi-dipole model. A training dataset, consisting of signatures prepared in finite element method (FEM) environment Simulia...

    Full text to download in external service

  • A Bayesian regularization-backpropagation neural network model for peeling computations

    Publication
    • S. Gouravaraju
    • J. Narayan
    • R. Sauer
    • S. S. Gautam

    - JOURNAL OF ADHESION - Year 2023

    A Bayesian regularization-backpropagation neural network (BRBPNN) model is employed to predict some aspects of the gecko spatula peeling, viz. the variation of the maximum normal and tangential pull-off forces and the resultant force angle at detachment with the peeling angle. K-fold cross validation is used to improve the effectiveness of the model. The input data is taken from finite element (FE) peeling results. The neural network...

    Full text available to download

  • Direct electrical stimulation of the human brain has inverse effects on the theta and gamma neural activities

    Publication
    • M. Lech
    • B. M. Berry
    • C. Topcu
    • V. Kremen
    • P. Nejedly
    • B. Lega
    • R. E. Gross
    • M. R. Sperling
    • B. C. Jobst
    • S. A. Sheth... and 4 others

    - IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING - Year 2021

    Objective: Our goal was to analyze the electrophysiological response to direct electrical stimulation (DES) systematically applied at a wide range of parameters and anatomical sites, with particular focus on neural activities associated with memory and cognition. Methods: We used a large set of intracranial EEG (iEEG) recordings with DES from 45 subjects with electrodes...

    Full text available to download

  • Direct electrical brain stimulation of human memory: lessons learnt and future perspectives

    Publication

    Modulation of cognitive functions supporting human declarative memory is one of the grand challenges of neuroscience, and of vast importance for a variety of neuropsychiatric, neurodegenerative and neurodevelopmental diseases. Despite a recent surge of successful attempts at improving performance in a range of memory tasks, the optimal approaches and parameters for memory enhancement have yet to be determined. On a more fundamental...

    Full text to download in external service

  • Application of spatial neural simulators of turbine blade rows to fluid flow diagnostics

    Publication

    - Year 2014

    This chapter presents the results of neural modelling of fluid flow in steam turbine row. In modelling working conditions of the flow channel varied, thus the aim of the work was to reconstruct the reference state - distributions of velocity, pressure, and losses in flow channel - with high accuracy for fluid flow diagnostics.

  • Controlling computer by lip gestures employing neural network

    Publication

    - Year 2010

    Results of experiments regarding lip gesture recognition with an artificial neural network are discussed. The neural network module forms the core element of a multimodal human-computer interface called LipMouse. This solution allows a user to work on a computer using lip movements and gestures. A user face is detected in a video stream from a standard web camera using a cascade of boosted classifiers working with Haar-like features....

    Full text to download in external service

  • Detection of Lexical Stress Errors in Non-Native (L2) English with Data Augmentation and Attention

    Publication

    - Year 2021

    This paper describes two novel complementary techniques that improve the detection of lexical stress errors in non-native (L2) English speech: attention-based feature extraction and data augmentation based on Neural Text-To-Speech (TTS). In a classical approach, audio features are usually extracted from fixed regions of speech such as the syllable nucleus. We propose an attention-based deep learning model that automatically de...

    Full text available to download

  • EPILEPTIC BEHAVIOR WITH A DISTINGUISHED PREICTAL PERIOD IN A LARGE-SCALE NEURAL NETWORK MODEL

    Publication

    - EPILEPSIA - Year 2009

    We present a neural network model capable of reproducing focal epileptic behavior. An important property of our model is the distinguished preictal state. This novel feature may shed light on the pathologi-cal mechanisms of seizure generation and, in perspective, help develop new therapeutic strategies to manage refractory partial epilepsy.

    Full text to download in external service

  • Periodic and chaotic dynamics in a map‐based neuron model

    Map-based neuron models are an important tool in modeling neural dynamics and sometimes can be considered as an alternative to usually computationally costlier models based on continuous or hybrid dynamical systems. However, due to their discrete nature, rigorous mathematical analysis might be challenging. We study a discrete model of neuronal dynamics introduced by Chialvo in 1995. In particular, we show that its reduced one-dimensional...

    Full text available to download

  • Potential and Use of the Googlenet Ann for the Purposes of Inland Water Ships Classification

    Publication

    - Polish Maritime Research - Year 2020

    This article presents an analysis of the possibilities of using the pre-degraded GoogLeNet artificial neural network to classify inland vessels. Inland water authorities monitor the intensity of the vessels via CCTV. Such classification seems to be an improvement in their statutory tasks. The automatic classification of the inland vessels from video recording is a one of the main objectives of the Automatic Ship Recognition and...

    Full text available to download

  • Survival time prognosis under a Markov model of cancer development

    Publication

    - Year 2010

    In this study we look at a breast cancer data set of women from Pomerania region collected in year 1987-1992 in the Medical University of Gdańsk. We analyze the clinical risk factors in conjunction with Markov model of cancer development. We evaluate Artificial Neural Network (ANN) survival time prediction via a simulation study.

  • Self Organizing Maps for Visualization of Categories

    Publication

    - Year 2012

    Visualization of Wikipedia categories using Self Organizing Mapsshows an overview of categories and their relations, helping to narrow down search domains. Selecting particular neurons this approach enables retrieval of conceptually similar categories. Evaluation of neural activations indicates that they form coherent patterns that may be useful for building user interfaces for navigation over category structures.

  • Pose classification in the gesture recognition using the linear optical sensor

    Publication

    Gesture sensors for mobile devices, which have a capability of distinguishing hand poses, require efficient and accurate classifiers in order to recognize gestures based on the sequences of primitives. Two methods of poses recognition for the optical linear sensor were proposed and validated. The Gaussian distribution fitting and Artificial Neural Network based methods represent two kinds of classification approaches. Three types...

    Full text to download in external service

  • A Simple Neural Network for Collision Detection of Collaborative Robots

    Publication

    Due to the epidemic threat, more and more companies decide to automate their production lines. Given the lack of adequate security or space, in most cases, such companies cannot use classic production robots. The solution to this problem is the use of collaborative robots (cobots). However, the required equipment (force sensors) or alternative methods of detecting a threat to humans are usually quite expensive. The article presents...

    Full text available to download

  • Influence of accelerometer signal pre-processing and classification method on human activity recognition

    A study of data pre-processing influence on accelerometer-based human activity recognition algorithms is presented. The frequency band used to filter-out the accelerometer signals and the number of accelerometers involved were considered in terms of their influence on the recognition accuracy. In the test four methods of classification were used: support vector machine, decision trees, neural network, k-nearest neighbor.

    Full text to download in external service

  • Multifunctional PID Neuro-Controller for Synchronous Generator

    This paper deals with a PID Neuro-Controller (PIDNC) for synchronous generator system. The controller is based on artificial neural network and adaptive control strategy. It ensures two functions: maintaining the generator voltage at its desired value and damping electromechanical oscillations. The performance of the proposed controller is evaluated on the basis of simulation tests. A comparative study of the results obtained with...

    Full text available to download

  • Automatic labeling of traffic sound recordings using autoencoder-derived features

    Publication

    An approach to detection of events occurring in road traffic using autoencoders is presented. Extensions of existing algorithms of acoustic road events detection employing Mel Frequency Cepstral Coefficients combined with classifiers based on k nearest neighbors, Support Vector Machines, and random forests are used. In our research, the acoustic signal gathered from the microphone placed near the road is split into frames and converted...

  • Economical methods for measuring road surface roughness

    Two low-cost methods of estimating the road surface condition are presented in the paper, the first one based on the use of accelerometers and the other on the analysis of images acquired from cameras installed in a vehicle. In the first method, miniature positioning and accelerometer sensors are used for evaluation of the road surface roughness. The device designed for installation in vehicles is composed of a GPS receiver and...

    Full text available to download

  • Digits Recognition with Quadrant Photodiode and Convolutional Neural Network

    Publication

    - Year 2018

    In this paper we have investigated the capabilities of a quadrant photodiode based gesture sensor in the recognition of digits drawn in the air. The sensor consisting of 4 active elements, 4 LEDs and a pinhole was considered as input interface for both discrete and continuous gestures. Index finger and a round pointer were used as navigating mediums for the sensor. Experiments performed with 5 volunteers...

    Full text to download in external service

  • Thermal Image Processing for Respiratory Estimation from Cubical Data with Expandable Depth

    Publication

    - Journal of Imaging - Year 2023

    As healthcare costs continue to rise, finding affordable and non-invasive ways to monitor vital signs is increasingly important. One of the key metrics for assessing overall health and identifying potential issues early on is respiratory rate (RR). Most of the existing methods require multiple steps that consist of image and signal processing. This might be difficult to deploy on edge devices that often do not have specialized...

    Full text available to download

  • Diagnosing wind turbine condition employing a neural network to the analysis of vibroacoustic signals

    It is important from the economic point of view to detect damage early in the wind turbines before failures occur. For this purpose, a monitoring device was built that analyzes both acoustic signals acquired from the built-in non-contact acoustic intensity probe, as well as from the accelerometers, mounted on the internal devices in the nacelle. The signals collected in this way are used for long-term training of the autoencoder...

    Full text available to download

  • Semantic segmentation training using imperfect annotations and loss masking

    One of the most significant factors affecting supervised neural network training is the precision of the annotations. Also, in a case of expert group, the problem of inconsistent data annotations is an integral part of real-world supervised learning processes, well-known to researchers. One practical example is a weak ground truth delineation for medical image segmentation. In this paper, we have developed a new method of accurate...

    Full text to download in external service

  • Monitoring Regenerative Heat Exchanger in Steam Power Plant by Making Use of the Recurrent Neural Network

    Artificial Intelligence algorithms are being increasingly used in industrial applications. Their important function is to support operation of diagnostic systems. This paper pesents a new approach to the monitoring of a regenerative heat exchanger in a steam power plant, which is based on a specific use of the Recurrent Neural Network (RNN). The proposed approach was tested using real data. This approach can be easily adapted to...

    Full text available to download

  • A method of self-testing of analog circuits based on fully differential op-amps with theTCBF classifier

    Publication

    - Year 2015

    A new approach of self-testing of analog circuits based on fully differential op-amps of mixed-signal systems controlled by microcontrollers is presented. It consists of a measurement procedure and a fault diagnosis procedure. We measure voltage samples of a time response of a tested circuit on a stimulation of a unit step function given at the common-mode reference voltage input of the op-amp. The fault detection and fault localization...

    Full text to download in external service

  • Design of Microstrip UWB Balun Using Quasi-TEM Approach Aided by the Artificial Neural Network

    Publication

    The design procedure for UWB balun realized in the microstrip technology is proposed in the paper. The procedure applies Artificial Neural Network which corrects the dimensions of the approximate design found by appropriate scaling of the dimensions of the prototype. The scale coefficients for longitudinal and transverse dimensions of microstrip lines are determined from electromagnetic modeling based on transmission line equations....

    Full text to download in external service

  • The role of EMG module in hybrid interface of prosthetic arm

    Nearly 10% of all upper limb amputations concern the whole arm. It affects the mobility and reduces the productivity of such a person. These two factors can be restored by using prosthetics. However, the complexity of human arm makes restoring its basic functions quite difficult. When the osseointegration and/or targeted muscle reinnervation (TMR) are not possible, different modalities can be used to control the prosthesis. In...

    Full text to download in external service

  • Previous Opinions is All You Need - Legal Information Retrieval System

    Publication

    - Year 2023

    We present a system for retrieving the most relevant legal opinions to a given legal case or question. To this end, we checked several state-of-the-art neural language models. As a training and testing data, we use tens of thousands of legal cases as question-opinion pairs. Text data has been subjected to advanced pre-processing adapted to the specifics of the legal domain. We empirically chose the BERT-based HerBERT model to perform...

    Full text to download in external service

  • Fast Approximate String Search for Wikification

    Publication

    The paper presents a novel method for fast approximate string search based on neural distance metrics embeddings. Our research is focused primarily on applying the proposed method for entity retrieval in the Wikification process, which is similar to edit distance-based similarity search on the typical dictionary. The proposed method has been compared with symmetric delete spelling correction algorithm and proven to be more efficient...

    Full text available to download