Search results for: prediction model
-
Validation of EORTC, CUETO and EAU risk stratification in prediction of recurrence, progression and death of patients with initially non-muscle invasive bladder cancer (NMIBC): a cohort analysis with systematic review.
Publication -
Reply to “Comment on ‘Crystal Structure Prediction by Global Optimization as a Tool for Evaluating Potentials: Role of the Dipole Moment Correction Term in Successful Predictions'” by B. P. van Eijck and J. Kroon
Publication -
Novel Complementary Multiple Concentric Split Ring Resonator for Reliable Characterization of Dielectric Substrates with High Sensitivity
PublicationAccurate characterization of dielectric substrates with high sensitivity remains an important challenge in a variety of industrial applications. This paper proposes an innovative strategy to address this challenge by developing and optimizing a unique Complementary Multiple Concentric Split Ring Resonator (CMC-SRR). The major goal is to propose a sensor design with increased sensitivity and reliability for dielectric characterization....
-
Potential of Explainable Artificial Intelligence in Advancing Renewable Energy: Challenges and Prospects
PublicationModern machine learning (ML) techniques are making inroads in every aspect of renewable energy for optimizationand model prediction. The effective utilization of ML techniques for the development and scaling up of renewable energy systemsneeds a high degree of accountability. However, most of the ML approaches currently in use are termed black box since their work isdifficult to comprehend. Explainable artificial intelligence (XAI)...
-
Online sound restoration system for digital library applications
PublicationAudio signal processing algorithms were introduced to the new online non-commercial service for audio restoration intended to enhance the content of digitized audio repositories. Missing or distorted audio samples are predicted using neural networks and a specific implementation of the Jannsen interpolation method based on the autoregressive model (AR) combined with the iterative restoring of missing signal samples. Since the distortion...
-
Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening
PublicationBeta-glucosidase inhibitors play important medical and biological roles. In this study, simple two-variable artificial neural network (ANN) classification models were developed for beta-glucosidase inhibitors screening. All bioassay data were obtained from the ChEMBL database. The classifiers were generated using 2D molecular descriptors and the data miner tool available in the STATISTICA package (STATISTICA Automated Neural...
-
Switched-capacitor DC-DC converters in arbitrary switching mode - topologically derived resistive models based on incremental graph approach.
PublicationIn the preceding paper we reviewed some of modeling approaches aimed at systematic formulation and solution of switched capacitor DC-DC converters. In our review, special attention was paid to computationally efficient and mathematically elegant methods. In so doing we had tried to demonstrate the virtues of unified Incremental Graph (IG) approach. Incremental Graph is, in concept, a tool originally created for analysis and synthesis...
-
Factors affecting the conclusion of an arrangement in restructuring proceedings: evidence from Poland
PublicationThe EU Restructuring Directive (2019/1023) requires Member States to provide a preventive restructuring framework for financially distressed entities that remain viable or are likely to readily restore economic viability. The first step to a successful restructuring is the approval of an arrangement between the debtor and creditors. The main research objective of the article is to identify factors affecting the conclusion of an...
-
Framework for Integration Decentralized and Untrusted Multi-vendor IoMT Environments
PublicationLack of standardization is highly visible while we use historical data sets or compare our model with others that use IoMT devices from different vendors. The problem also concerns the trust in highly decentralized and anonymous environments where sensitive data are transferred through the Internet and then are analyzed by third-party companies. In our research we propose a standard that has been implemented in the form of framework...
-
Evaluating the risk of endometriosis based on patients’ self-assessment questionnaires
PublicationBackground Endometriosis is a condition that significantly affects the quality of life of about 10 % of reproductive-aged women. It is characterized by the presence of tissue similar to the uterine lining (endometrium) outside the uterus, which can lead lead scarring, adhesions, pain, and fertility issues. While numerous factors associated with endometriosis are documented, a wide range of symptoms may still be undiscovered. Methods In...
-
Deep learning for ultra-fast and high precision screening of energy materials
PublicationSemiconductor materials for energy storage are the core and foundation of modern information society and play important roles in photovoltaic system, integrated circuit, spacecraft technology, lighting applications, and other fields. Unfortunately, due to the long experiment period and high calculation cost, the high-precision band gap (the basic characteristic parameter) of semiconductor is difficult to obtain, which hinders the...
-
Energy consumption optimization in wastewater treatment plants: Machine learning for monitoring incineration of sewage sludge
PublicationBiomass management in terms of energy consumption optimization has become a recent challenge for developed countries. Nevertheless, the multiplicity of materials and operating parameters controlling energy consumption in wastewater treatment plants necessitates the need for sophisticated well-organized disciplines in order to minimize energy consumption and dissipation. Sewage sludge (SS) disposal management is the key stage of...
-
An asymmetrical λ-foot of condensing steam flow in the IMP PAN nozzle
PublicationIn the present paper we have focused on the precise prediction of the spontaneous condensation phenomena in wet steam flow. Novelty of our approach lies on modelling both the moment of initiation of a phase transition, as well as the moment of its reverse progress - called here re-vaporization of the condensate phase. The practical issue is to elaborate of a model of spontaneous condensation/vaporization of water steam flow...
-
Some Aspects of Shear Behavior of Soft Soil–Concrete Interfaces and Its Consequences in Pile Shaft Friction Modeling
PublicationThis paper examines the stiffness degradation and interface failure load on soft soil–concrete interface. The friction behavior and its variability is investigated. The direct shear tests under constant normal load were used to establish parameters to hyperbolic interface model which provided a good approximation of the data from instrumented piles. Four instrumented piles were used to obtain reference soil–concrete interface behavior....
-
A New Approach for Investigating the Impact of Pesticides and Nutrient Flux from Agricultural Holdings and Land-Use Structures on Baltic Sea Coastal Waters
PublicationKnowledge related to land-use management impacts on the Baltic Sea ecosystem is limited. The constant release of pollutants into water bodies has resulted in water quality degradation. Therefore, only the innovative approaches integrated with research will provide accurate solutions and methods for proper environment management and will enable understanding and prediction of the impacts of land-use in the Baltic Sea region. Modelling...
-
Online sound restoration system for digital library applications.
PublicationAudio signal processing algorithms were introduced to the new online non-commercial service for audio restoration intended to enhance the content of digitized audio repositories. Missing or distorted audio samples are predicted using neural networks and a specific implementation of the Jannsen interpolation method based on the autoregressive model (AR) combined with the iterative restoring of missing signal samples. Since the distortion...
-
Optimization of Saccharification Conditions of Lignocellulosic Biomass under Alkaline Pre-Treatment and Enzymatic Hydrolysis
PublicationPre-treatment is a significant step in the production of second-generation biofuels from waste lignocellulosic materials. Obtaining biofuels as a result of fermentation processes requires appropriate pre-treatment conditions ensuring the highest possible degree of saccharification of the feed material. An influence of the following process parameters were investigated for alkaline pre-treatment of Salix viminalis L.: catalyst concentration...
-
Localization of impulsive disturbances in audio signals using template matching
PublicationIn this paper, a new solution to the problem of elimination of impulsive disturbances from audio signals, based on the matched filtering technique, is proposed. The new approach stems from the observation that a large proportion of noise pulses corrupting audio recordings have highly repetitive shapes that match several typical “patterns”. In many cases a representative set of exemplary pulse waveforms can be extracted from the...
-
On adaptive covariance and spectrum estimation of locally stationary multivariate processes
PublicationWhen estimating the correlation/spectral structure of a locally stationary process, one has to make two important decisions. First, one should choose the so-called estimation bandwidth, inversely proportional to the effective width of the local analysis window, in the way that complies with the degree of signal nonstationarity. Too small bandwidth may result in an excessive estimation bias, while too large bandwidth may cause excessive...
-
FACTORS AFFECTING THE CONCLUSION OF AN ARRANGEMENT IN RESTRUCTURING PROCEEDINGS: EVIDENCE FROM POLAND
PublicationThe EU Restructuring Directive (2019/1023) requires Member States to provide a preventive restructuring framework for financially distressed entities that remain viable or are likely to readily restore economic viability. The first step to a successful restructuring is the approval of an arrangement between the debtor and creditors. The main research objective of the article is to identify factors affecting the conclusion of an...
-
Active learning on stacked machine learning techniques for predicting compressive strength of alkali-activated ultra-high-performance concrete
PublicationConventional ultra-high performance concrete (UHPC) has excellent development potential. However, a significant quantity of CO2 is produced throughout the cement-making process, which is in contrary to the current worldwide trend of lowering emissions and conserving energy, thus restricting the further advancement of UHPC. Considering climate change and sustainability concerns, cementless, eco-friendly, alkali-activated UHPC (AA-UHPC)...
-
Co-gasification of waste biomass-low grade coal mix using downdraft gasifier coupled with dual-fuel engine system: Multi-objective optimization with hybrid approach using RSM and Grey Wolf Optimizer
PublicationThe looming global crisis over increasing greenhouse gases and rapid depletion of fossil fuels are the motivation factors for researchers to search for alternative fuels. There is a need for more sustainable and less polluting fuels for internal combustion engines. Biomass offers significant potential as a feed material for gasification to produce gaseous fuel. It is carbon neutral, versatile, and abundant on earth. The present...
-
Structure of the US investment company industry over the period 2000 to 2017: substitution analysis
PublicationOver the last years the investment company industry has undergone deep transformation in the majority of the most advanced economies, including the United States. Traditional investment companies, such as mutual funds, have lost their market share to innovative exchange-traded funds (ETFs). The main distinctive features of ETFs are listing and trading in their units on the stock exchanges as well as lower costs for investors. The...
-
Experimental investigations on adiabatic frictional pressure drops of R134a during flow in 5mm diameter channel
PublicationThe article presents detailed two-phase adiabatic pressure drops data for refrigerant R134a at a saturation pressure of 5.5 bar corresponding to the saturation temperature of 19.4 °C. Study cases have been set for a mass flux varying from 100 to 500 kg/m2 s. The frictional pressure drop was characterized for the refrigerant R134a, for vapor qualities ranging from 0 to 1. Long-time thermal stability of test facility allowed to gather...
-
A review on computer‐aided chemogenomics and drug repositioning for rational COVID ‐19 drug discovery
PublicationApplication of materials capable of energy harvesting to increase the efficiency and environmental adaptability is sometimes reflected in the ability of discovery of some traces in an environment―either experimentally or computationally―to enlarge practical application window. The emergence of computational methods, particularly computer-aided drug discovery (CADD), provides ample opportunities for the rapid discovery and development...
-
Source code - AI models (MLM1-5 - series I-III - QNM opt)
Open Research DataSource code - AI models (MLM1-5 - series I-III - QNM opt) for the paper "Computational Complexity and Its Influence on Concrete Compressive Strength Prediction Capabilities of Machine Learning Models for Concrete Mix Design Support" accepted for publication.
-
Solubility of dapsone in deep eutectic solvents: Experimental analysis, molecular insights and machine learning predictions
PublicationBackground. Dapsone (DAP) is an anti-inflammatory and antimicrobial active pharmaceutical ingredient used to treat, e.g., AIDS-related diseases. However, low solubility is a feature hampering its efficient use. Objectives. First, deep eutectic solvents...
-
Combining X-ray tomogrpahy imaging and DEM simulations to investigate granular material flow during silo discharging
PublicationEven after few decades of research, the study of particle motion taking place during silo discharging hasn’t been fully addressed, both experimentally and numerically, because of nontrivial behaviors that occur during associated flow patterns. For instance, discrete element method (DEM) has shown good qualitative prediction potential of velocity profile, but, on the other hand, frequently failed to match quantitatively experimental...
-
Stormwater runoff in the urbanized coastal basin of Gdańsk Urbanized basin of Gdańsk
PublicationAnthropopressure strongly affects the primal water cycle. Alternation of the natural basins imposes changes of drainage patterns, reduction of bioretention, infiltration and base flow. As a result the overland flow predominates and greater runoff rates flow into storm water collection systems and reservoirs. Moreover changing climatic conditions increase the frequency of rapid extreme weather events. Infrastructures of urban areas...
-
Correlation between the number of Pro-Ala repeats in the EmrA homologue of Acinetobacter baumannii and resistance to netilmicin, tobramycin, imipenem and ceftazidime
PublicationAcinetobacter baumannii coccobacilli are dangerous to patients in intensive care units because of their multidrug resistance to antibiotics, developed mainly in the past decade. This study aimed to examine whether there is a significant correlation between the number of Pro-Ala repeats in the CAP01997 protein, the EmrA homologue of A. baumannii, and resistance to antibiotics. A total of 79 multidrug-resistant A. baumannii strains...
-
Stormwater and snowmelt runoff storage control and flash flood hazard forecasting in the urbanized coastal basin.
PublicationCity of Gdańsk is located in a coastal region where changing climatic conditions increase the frequency of extreme weather events. Developing urbanization affects the hydrology of natural basins by simplification of the drainage system and reduction of infiltration and base flow. Consequently greater runoff rates flow into storm water collection systems, reservoirs and surrounding water bodies. Not only infrastructures of urban...
-
Can Web Search Queries Predict Prices Change on the Real Estate Market?
PublicationThis study aims to explore whether the intensity of internet searches, according to the Google Trends search volume index (SVI), is a predictor of changes in real estate prices. The motivation of this study is the possibility to extend the understanding of the extra predictive power of Google search engine query volume of future housing price change (shift direction) by (i) the introduction of a research approach that combines...
-
Identification of category associations using a multilabel classifier
PublicationDescription of the data using categories allows one to describe it on a higher abstraction level. In this way, we can operate on aggregated groups of the information, allowing one to see relationships that do not appear explicit when we analyze the individual objects separately. In this paper we present automatic identification of the associations between categories used for organization of the textual data. As experimental data...
-
Employing flowgraphs for forward route reconstruction in video surveillance system
PublicationPawlak’s flowgraphs were utilized as a base idea and knowledge container for prediction and decision making algorithms applied to experimental video surveillance system. The system is used for tracking people inside buildings in order to obtain information about their appearance and movement. The fields of view of the cameras did not overlap. Therefore, when an object was moving through unsupervised areas, prediction was needed...
-
MP3vec: A Reusable Machine-Constructed Feature Representation for Protein Sequences
Publication—Machine Learning (ML) methods have been used with varying degrees of success on protein prediction tasks, with two inherent limitations. First, prediction performance often depends upon the features extracted from the proteins. Second, experimental data may be insufficient to construct reliable ML models. Here we introduce MP3vec, a transferable representation for protein sequences that is designed to be used specifically for sequence-to-sequence...
-
Numerical analysis of pile installation effects in cohesive soils
PublicationIn this thesis the empirical equation for radial effective stress calculation after displacement pile installation and following consolidation phase has been proposed. The equation is based on the numerical studies performed with Updated Lagrangian, Arbitrary Lagrangian-Eulerian and Coupled Eulerian-Lagrangian formulations as well as the calibration procedure with database containing world-wide 30 pile static loading tests in cohesive...
-
Detection of impulsive disturbances in archive audio signals
PublicationIn this paper the problem of detection of impulsive disturbances in archive audio signals is considered. It is shown that semi-causal/noncausal solutions based on joint evaluation of signal prediction errors and leave-one-out signal interpolation errors, allow one to noticeably improve detection results compared to the prediction-only based solutions. The proposed approaches are evaluated on a set of clean audio signals contaminated...
-
Experimental and theoretical study of a vertical tube in shell storage unit with biodegradable PCM for low temperature thermal energy storage applications
PublicationThis article presents the experimental investigations of the coconut oil-based TES module for HVAC applications in the ambient and-sub ambient temperature range. To properly study this problem modular experimental module and test loop were developed. Special attention has been paid to study the physical mechanism of the melting/solidification process for natural substance (coconut oil) which has perspectives to be used in thermal...
-
Wireless intelligent audio-video surveillance prototyping system
PublicationThe presented system is based on the Virtex6 FPGA and several supporting devices like a fast DDR3 memory, small HD camera, microphone with A/D converter, WiFi radio communication module, etc. The system is controlled by the Linux operating system. The Linux drivers for devices implemented in the system have been prepared. The system has been successfully verified in a H.264 compression accelerator prototype in which the most demanding...
-
Elimination of impulsive disturbances from archive audio files – comparison of three noise pulse detection schemes
PublicationThe problem of elimination of impulsive disturbances (such as clicks, pops, ticks, crackles, and record scratches) from archive audio recordings is considered and solved using autoregressive modeling. Three classical noise pulse detection schemes are examined and compared: the approach based on open-loop multi-step-ahead signal prediction, the approach based on decision-feedback signal prediction, and the double threshold approach,...
-
On ship roll resonance frequency
PublicationThe paper deals with the problem of modeling of rolling motion under a variety of excitation parameters. Special emphasis is put on the analysis and prediction of the frequency of the resonant mode of rolling, since it is often an essential issue in terms of motion of a ship related to her safety against capsizing or excessive amplitudes of roll. The research is performed for both free rolling and excited rolling and it is based...
-
Corrigendum to “Experimental analysis on the risk of vortex ventilation and the free surface ventilation of marine propellers”
PublicationThe paper presents a discussion of the ventilation inception and air drawing prediction of ships propellers, aiming to predict under what conditions ventilation will happen, and the actual physical mechanism of the ventilation.
-
New semi-causal and noncausal techniques for detection of impulsive disturbances in multivariate signals with audio applications
PublicationThis paper deals with the problem of localization of impulsive disturbances in nonstationary multivariate signals. Both unidirectional and bidirectional (noncausal) detection schemes are proposed. It is shown that the strengthened pulse detection rule, which combines analysis of one-step-ahead signal prediction errors with critical evaluation of leave-one-out signal interpolation errors, allows one to noticeably improve detection results...
-
Trim Optimisation - Theory and Practice
PublicationForce Technology has been working intensively with trim optimisation tests for almost last 10 years. Focus has primarily been put on the possible power savings and exhaust gases reduction. This paper describes the trim optimisation process for a large cargo vessel. The physics behind changed propulsive power is described and the analyses in order to elaborate the optimum trimmed conditions are presented. Different methods for prediction...
-
TOWARDS EXPLAINABLE CLASSIFIERS USING THE COUNTERFACTUAL APPROACH - GLOBAL EXPLANATIONS FOR DISCOVERING BIAS IN DATA
PublicationThe paper proposes summarized attribution-based post-hoc explanations for the detection and identification of bias in data. A global explanation is proposed, and a step-by-step framework on how to detect and test bias is introduced. Since removing unwanted bias is often a complicated and tremendous task, it is automatically inserted, instead. Then, the bias is evaluated with the proposed counterfactual approach. The obtained results...
-
Traffic Noise Analysis Applied to Automatic Vehicle Counting and Classification
PublicationProblems related to determining traffic noise characteristics are discussed in the context of automatic dynamic noise analysis based on noise level measurements and traffic prediction models. The obtained analytical results provide the second goal of the study, namely automatic vehicle counting and classification. Several traffic prediction models are presented and compared to the results of in-situ noise level measurements. Synchronized...
-
Computational collective intelligence for enterprise information systems
PublicationCollective intelligence is most often understood as a kind of intelligence which arises on the basis of a group (collective) of autonomous unites (people, systems) which is taskoriented. There are two important aspects of an intelligent collective: The cooperation aspect and the competition aspect (Levy 1997). The first of them means the possibility for integrating the decisions made by the collective members for creating the decision of...
-
Multi-Criteria Knowledge-Based Recommender System for Decision Support in Complex Business Processes
PublicationIn this paper, we present a concept of a multi-criteria knowledge-based Recommender System (RS) designed to provide decision support in complex business process (BP) scenarios. The developed approach is based on the knowledge aspects of Stylistic Patterns, Business Sentiment and Decision-Making Logic extracted from the BP unstructured texts. This knowledge serves as an input for a multi-criteria RS algorithm. The output is prediction...
-
New generation of analytical tests based on the assessment of enzymatic and nuclear receptor activity changes induced by environmental pollutants
PublicationAnalytical methods show great potential in biological tests. The analysis of biological response that results from environmental pollutant exposure allows: (i) prediction of the risk of toxic effects and (ii) provision of the background for the development of markers of the toxicants presence. Bioanalytical tests based on changes in enzymatic activity and nuclear receptor action provide extremely high specificity and sensitivity....
-
The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process
PublicationThis paper presents the application of artificial neural networks and decision trees for the prediction of odor properties of post-fermentation sludge from a biological-mechanical wastewater treatment plant. The input parameters were concentrations of popular compounds present in the sludge, such as toluene, p-xylene, and p-cresol, and process parameters including the concentration of volatile fatty acids, pH, and alkalinity in...