Search results for: MACHINE LEARNING, DEEP NEURAL NETWORKS, CEREBRAL MICROBLEEDS, CMB DETECTION, MR IMAGES - Bridge of Knowledge

Search

Search results for: MACHINE LEARNING, DEEP NEURAL NETWORKS, CEREBRAL MICROBLEEDS, CMB DETECTION, MR IMAGES

Search results for: MACHINE LEARNING, DEEP NEURAL NETWORKS, CEREBRAL MICROBLEEDS, CMB DETECTION, MR IMAGES

  • Olgun Aydin dr

    Olgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Principal Machine Learning Engineer in Nike, and works as Assistant Professor in Gdansk University of Technology in Poland. Dr. Aydin is part of editorial board of "Journal of Artificial Intelligence and Data Science" Dr. Aydin served as Vice-Chairman of Why R? Foundation and is member of Polish Artificial Intelligence Society. Olgun is...

  • A Comprehensive Analysis of Deep Neural-Based Cerebral Microbleeds Detection System

    Publication

    - Electronics - Year 2021

    Machine learning-based systems are gaining interest in the field of medicine, mostly in medical imaging and diagnosis. In this paper, we address the problem of automatic cerebral microbleeds (CMB) detection in magnetic resonance images. It is challenging due to difficulty in distinguishing a true CMB from its mimics, however, if successfully solved it would streamline the radiologists work. To deal with this complex three-dimensional...

    Full text available to download

  • Deep neural networks for data analysis 24/25

    e-Learning Courses
    • J. Cychnerski
    • K. Draszawka

    This course covers introduction to supervised machine learning, construction of basic artificial deep neural networks (DNNs) and basic training algorithms, as well as the overview of popular DNNs architectures (convolutional networks, recurrent networks, transformers). The course introduces students to popular regularization techniques for deep models. Besides theory, large part of the course is the project in which students apply...

  • Deep Learning Basics 2023/24

    e-Learning Courses
    • K. Draszawka

    A course about the basics of deep learning intended for students of Computer Science. It includes an introduction to supervised machine learning, the architecture of basic artificial neural networks and their training algorithms, as well as more advanced architectures (convolutional networks, recurrent networks, transformers) and regularization and optimization techniques.

  • Olgun Aydin Dr

    People

    Olgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Senior Data Scientist in PwC Poland, gives lectures in Gdansk University of Technology in Poland and member of WhyR? Foundation. Olgun is a very big fan of R and author of the book called “R Web Scraping Quick Start Guide” , two video courses are called “Deep Dive into Statistical Modelling using R” and “Applied Machine Learning and Deep...

  • SegSperm - a dataset of sperm images for blurry and small object segmentation

    Open Research Data

    Many deep learning applications require figure-ground segmentation. The performance of segmentation models varies across modalities and acquisition settings.

  • Neural networks and deep learning

    Publication

    - Year 2022

    In this chapter we will provide the general and fundamental background related to Neural Networks and Deep Learning techniques. Specifically, we divide the fundamentals of deep learning in three parts, the first one introduces Deep Feed Forward Networks and the main training algorithms in the context of optimization. The second part covers Convolutional Neural Networks (CNN) and discusses their main advantages and shortcomings...

    Full text to download in external service

  • Face with Mask Detection in Thermal Images Using Deep Neural Networks

    Publication

    As the interest in facial detection grows, especially during a pandemic, solutions are sought that will be effective and bring more benefits. This is the case with the use of thermal imaging, which is resistant to environmental factors and makes it possible, for example, to determine the temperature based on the detected face, which brings new perspectives and opportunities to use such an approach for health control purposes. The...

    Full text available to download

  • Adaptacyjny system oświetlania dróg oraz inteligentnych miast

    Publication

    - Year 2024

    Przedmiotem rozprawy jest zbadanie praktycznej możliwości wykrywania w czasie rzeczywistym anomalii w systemie oświetlenia drogowego w oparciu o analizę danych ze inteligentnych liczników energii. Zastosowanie inteligentnych liczników energii elektrycznej (Smart Meter) w systemach oświetlenia drogowego stwarza nowe możliwości w zakresie automatycznej diagnostyki takich niepożądanych zjawisk jak awarie lamp, odstępstwa od harmonogramu...

    Full text available to download

  • Deep neural networks for data analysis

    e-Learning Courses
    • K. Draszawka

    The aim of the course is to familiarize students with the methods of deep learning for advanced data analysis. Typical areas of application of these types of methods include: image classification, speech recognition and natural language understanding. Celem przedmiotu jest zapoznanie studentów z metodami głębokiego uczenia maszynowego na potrzeby zaawansowanej analizy danych. Do typowych obszarów zastosowań tego typu metod należą:...

  • Optimized Deep Learning Model for Flood Detection Using Satellite Images

    Publication
    • A. Stateczny
    • H. D. Praveena
    • R. H. Krishnappa
    • K. R. Chythanya
    • B. B. Babysarojam

    - Remote Sensing - Year 2023

    The increasing amount of rain produces a number of issues in Kerala, particularly in urban regions where the drainage system is frequently unable to handle a significant amount of water in such a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance the outcomes of conventional flood detection...

    Full text available to download

  • Outlier detection method by using deep neural networks

    Publication

    - Year 2017

    Detecting outliers in the data set is quite important for building effective predictive models. Consistent prediction can not be made through models created with data sets containing outliers, or robust models can not be created. In such cases, it may be possible to exclude observations that are determined to be outlier from the data set, or to assign less weight to these points of observation than to other points of observation....

    Full text to download in external service

  • Sathwik Prathapagiri

    People

    Sathwik was born in 2000. In 2022, he completed his Master’s of Science in  Biological Sciences and Bachelor’s of Engineering in Chemical Engineering in an integrated dual degree program from Birla Institute Of Technology And Science, Pilani, India. During his final year, he worked as a research intern under Dr Giri P Krishnan at Bazhenov lab, University of California San Diego school of medicine to pursue his Master’s Thesis on...

  • Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality

    Publication
    • W. Nazar
    • K. Nazar
    • L. Daniłowicz-Szymanowicz

    - Life - Year 2024

    High-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...

    Full text to download in external service

  • Deep neural networks approach to skin lesions classification — A comparative analysis

    The paper presents the results of research on the use of Deep Neural Networks (DNN) for automatic classification of the skin lesions. The authors have focused on the most effective kind of DNNs for image processing, namely Convolutional Neural Networks (CNN). In particular, three kinds of CNN were analyzed: VGG19, Residual Networks (ResNet) and the hybrid of VGG19 CNN with the Support Vector Machine (SVM). The research was carried...

    Full text to download in external service

  • Deep Learning

    Publication

    - Year 2021

    Deep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...

    Full text to download in external service

  • Selected Technical Issues of Deep Neural Networks for Image Classification Purposes

    In recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...

    Full text available to download

  • Bees Detection on Images: Study of Different Color Models for Neural Networks

    Publication

    This paper presents an approach to bee detection in video streams using a neural network classifier. We describe the motivation for our research and the methodology of data acquisition. The main contribution to this work is a comparison of different color models used as an input format for a feedforward convolutional architecture applied to bee detection. The detection process has is based on a neural binary classifier that classifies...

    Full text available to download

  • Explainable AI for Inspecting Adversarial Attacks on Deep Neural Networks

    Deep Neural Networks (DNN) are state of the art algorithms for image classification. Although significant achievements and perspectives, deep neural networks and accompanying learning algorithms have some important challenges to tackle. However, it appears that it is relatively easy to attack and fool with well-designed input samples called adversarial examples. Adversarial perturba-tions are unnoticeable for humans. Such attacks...

    Full text available to download

  • Towards bees detection on images: study of different color models for neural networks

    Publication

    This paper presents an approach to bee detection in videostreams using a neural network classifier. We describe the motivationfor our research and the methodology of data acquisition. The maincontribution to this work is a comparison of different color models usedas an input format for a feedforward convolutional architecture appliedto bee detection. The detection process has is based on a neural...

  • DEEP CONVOLUTIONAL NEURAL NETWORKS AS A DECISION SUPPORT TOOL IN MEDICAL PROBLEMS – MALIGNANT MELANOMA CASE STUDY

    The paper presents utilization of one of the latest tool from the group of Machine learning techniques, namely Deep Convolutional Neural Networks (CNN), in process of decision making in selected medical problems. After the survey of the most successful applications of CNN in solving medical problems, the paper focuses on the very difficult problem of automatic analyses of the skin lesions. The authors propose the CNN structure...

    Full text to download in external service

  • Interpretable Deep Learning Model for the Detection and Reconstruction of Dysarthric Speech

    Publication
    • D. Korzekwa
    • R. Barra-Chicote
    • B. Kostek
    • T. Drugman
    • M. Łajszczak

    - Year 2019

    We present a novel deep learning model for the detection and reconstruction of dysarthric speech. We train the model with a multi-task learning technique to jointly solve dysarthria detection and speech reconstruction tasks. The model key feature is a low-dimensional latent space that is meant to encode the properties of dysarthric speech. It is commonly believed that neural networks are black boxes that solve problems but do not...

    Full text available to download

  • User Orientation Detection in Relation to Antenna Geometry in Ultra-Wideband Wireless Body Area Networks Using Deep Learning

    Publication

    - SENSORS - Year 2024

    In this paper, the issue of detecting a user’s position in relation to the antenna geometry in ultra-wideband (UWB) off-body wireless body area network (WBAN) communication using deep learning methods is presented. To measure the impulse response of the channel, a measurement stand consisting of EVB1000 devices and DW1000 radio modules was developed and indoor static measurement scenarios were performed. It was proven that for...

    Full text available to download

  • Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics

    Publication

    - Year 2020

    Remote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...

    Full text available to download

  • A survey of neural networks usage for intrusion detection systems

    In recent years, advancements in the field of the artificial intelligence (AI) gained a huge momentum due to the worldwide appliance of this technology by the industry. One of the crucial areas of AI are neural networks (NN), which enable commer‐ cial utilization of functionalities previously not accessible by usage of computers. Intrusion detection system (IDS) presents one of the domains in which neural networks are widely tested...

    Full text available to download

  • Clothes Detection and Classification Using Convolutional Neural Networks

    Publication

    In this paper we describe development of a computer vision system for accurate detection and classification of clothes for e-commerce images. We present a set of experiments on well established architectures of convolutional neural networks, including Residual networks, SqueezeNet and Single Shot MultiBox Detector (SSD). The clothes detection network was trained and tested on DeepFashion dataset, which contains box annotations...

    Full text to download in external service

  • Speech Analytics Based on Machine Learning

    Publication

    In this chapter, the process of speech data preparation for machine learning is discussed in detail. Examples of speech analytics methods applied to phonemes and allophones are shown. Further, an approach to automatic phoneme recognition involving optimized parametrization and a classifier belonging to machine learning algorithms is discussed. Feature vectors are built on the basis of descriptors coming from the music information...

    Full text to download in external service

  • Deep learning techniques for biometric security: A systematic review of presentation attack detection systems

    Publication

    - ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE - Year 2024

    Biometric technology, including finger vein, fingerprint, iris, and face recognition, is widely used to enhance security in various devices. In the past decade, significant progress has been made in improving biometric sys- tems, thanks to advancements in deep convolutional neural networks (DCNN) and computer vision (CV), along with large-scale training datasets. However, these systems have become targets of various attacks, with...

    Full text to download in external service

  • Deep Learning: A Case Study for Image Recognition Using Transfer Learning

    Publication

    - Year 2021

    Deep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...

    Full text to download in external service

  • Data augmentation for improving deep learning in image classification problem

    Publication

    These days deep learning is the fastest-growing field in the field of Machine Learning (ML) and Deep Neural Networks (DNN). Among many of DNN structures, the Convolutional Neural Networks (CNN) are currently the main tool used for the image analysis and classification purposes. Although great achievements and perspectives, deep neural networks and accompanying learning algorithms have some relevant challenges to tackle. In this...

    Full text to download in external service

  • Deep neural networks for data analysis 27/28

    e-Learning Courses
    • K. Draszawka

  • Deep neural networks for data analysis 25/26

    e-Learning Courses
    • K. Draszawka

  • Deep neural networks for data analysis 26/27

    e-Learning Courses
    • K. Draszawka

  • Predicting emotion from color present in images and video excerpts by machine learning

    Publication

    This work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...

    Full text available to download

  • An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks

    Publication

    - Journal of Artificial Intelligence and Soft Computing Research - Year 2023

    In this paper, an intelligent approach to the Short-Term Wind Power Prediction (STWPP) problem is considered, with the use of various types of Deep Neural Networks (DNNs). The impact of the prediction time horizon length on accuracy, and the influence of temperature on prediction effectiveness have been analyzed. Three types of DNNs have been implemented and tested, including: CNN (Convolutional Neural Networks), GRU (Gated Recurrent...

    Full text available to download

  • Robustness in Compressed Neural Networks for Object Detection

    Publication

    - Year 2021

    Model compression techniques allow to significantly reduce the computational cost associated with data processing by deep neural networks with only a minor decrease in average accuracy. Simultaneously, reducing the model size may have a large effect on noisy cases or objects belonging to less frequent classes. It is a crucial problem from the perspective of the models' safety, especially for object detection in the autonomous driving...

    Full text available to download

  • Pedestrian detection in low-resolution thermal images

    Over one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...

    Full text to download in external service

  • Deep Learning-Based Intrusion System for Vehicular Ad Hoc Networks

    Publication

    - CMC-Computers Materials & Continua - Year 2020

    The increasing use of the Internet with vehicles has made travel more convenient. However, hackers can attack intelligent vehicles through various technical loopholes, resulting in a range of security issues. Due to these security issues, the safety protection technology of the in-vehicle system has become a focus of research. Using the advanced autoencoder network and recurrent neural network in deep learning, we investigated...

    Full text available to download

  • Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks

    In this article, the usage of deep learning (DL) in ultra-wideband (UWB) Wireless Body Area Networks (WBANs) is presented. The developed approach, using channel impulse response, allows higher efficiency in identifying the direct visibility conditions between nodes in off-body communication with comparison to the methods described in the literature. The effectiveness of the proposed deep feedforward neural network was checked on...

    Full text available to download

  • A novel approach exploiting properties of convolutional neural networks for vessel movement anomaly detection and classification

    Publication

    The article concerns the automation of vessel movement anomaly detection for maritime and coastal traffic safety services. Deep Learning techniques, specifically Convolutional Neural Networks (CNNs), were used to solve this problem. Three variants of the datasets, containing samples of vessel traffic routes in relation to the prohibited area in the form of a grayscale image, were generated. 1458 convolutional neural networks with...

    Full text available to download

  • Real-Time Facial Features Detection from Low Resolution Thermal Images with Deep Classification Models

    Deep networks have already shown a spectacular success for object classification and detection for various applications from everyday use cases to advanced medical problems. The main advantage of the classification models over the detection models is less time and effort needed for dataset preparation, because classification networks do not require bounding box annotations, but labels at the image level only. Yet, after passing...

    Full text to download in external service

  • Playback detection using machine learning with spectrogram features approach

    Publication

    - Year 2017

    This paper presents 2D image processing approach to playback detection in automatic speaker verification (ASV) systems using spectrograms as speech signal representation. Three feature extraction and classification methods: histograms of oriented gradients (HOG) with support vector machines (SVM), HAAR wavelets with AdaBoost classifier and deep convolutional neural networks (CNN) were compared on different data partitions in respect...

    Full text available to download

  • Improving Accuracy of Contactless Respiratory Rate Estimation by Enhancing Thermal Sequences with Deep Neural Networks

    Estimation of vital signs using image processing techniques have already been proved to have a potential for supporting remote medical diagnostics and replacing traditional measurements that usually require special hardware and electrodes placed on a body. In this paper, we further extend studies on contactless Respiratory Rate (RR) estimation from extremely low resolution thermal imagery by enhancing acquired sequences using Deep...

    Full text available to download

  • Deep learning in the fog

    In the era of a ubiquitous Internet of Things and fast artificial intelligence advance, especially thanks to deep learning networks and hardware acceleration, we face rapid growth of highly decentralized and intelligent solutions that offer functionality of data processing closer to the end user. Internet of Things usually produces a huge amount of data that to be effectively analyzed, especially with neural networks, demands high...

    Full text available to download

  • Neural Networks, Support Vector Machine and Genetic Algorithms for Autonomous Underwater Robot Support

    Publication

    - Year 2014

    In this paper, artificial neural networks, a classification technique called support vector machine and meta-heuristics genetic algorithm have been considered for development in autonomous underwater robots. Artificial neural networks have been used for seabed modelling as well as support vector machine has been applied for the obstacles classification to avoid some collision problems. Moreover, genetic algorithm has been applied...

    Full text to download in external service

  • Channel State Estimation in LTE-Based Heterogenous Networks Using Deep Learning

    Following the continuous development of the information technology, the concept of dense urban networks has evolved as well. The powerful tools, like machine learning, break new ground in smart network and interface design. In this paper the concept of using deep learning for estimating the radio channel parameters of the LTE (Long Term Evolution) radio interface is presented. It was proved that the deep learning approach provides...

    Full text available to download

  • Deep learning-based waste detection in natural and urban environments

    Waste pollution is one of the most significant environmental issues in the modern world. The importance of recycling is well known, both for economic and ecological reasons, and the industry demands high efficiency. Current studies towards automatic waste detection are hardly comparable due to the lack of benchmarks and widely accepted standards regarding the used metrics and data. Those problems are addressed in this article by...

    Full text available to download

  • Rediscovering Automatic Detection of Stuttering and Its Subclasses through Machine Learning—The Impact of Changing Deep Model Architecture and Amount of Data in the Training Set

    Publication

    - Applied Sciences-Basel - Year 2023

    This work deals with automatically detecting stuttering and its subclasses. An effective classification of stuttering along with its subclasses could find wide application in determining the severity of stuttering by speech therapists, preliminary patient diagnosis, and enabling communication with the previously mentioned voice assistants. The first part of this work provides an overview of examples of classical and deep learning...

    Full text available to download

  • The use of machine learning for face regions detection in thermograms

    Publication

    - Year 2022

    The aim of this study is to analyse the methods of detecting characteristic points of the face in thermographic images. As part of the implementation an extensive analysis of scientific publications covering similar issues both for the analysis of images made in visible light and thermographic images was carried out. On the basis of this analysis, 3 models were selected and then they were implemented and tested on the basis of...

    Full text to download in external service

  • Training of Deep Learning Models Using Synthetic Datasets

    Publication

    - Year 2022

    In order to solve increasingly complex problems, the complexity of Deep Neural Networks also needs to be constantly increased, and therefore training such networks requires more and more data. Unfortunately, obtaining such massive real world training data to optimize neural networks parameters is a challenging and time-consuming task. To solve this problem, we propose an easy-touse and general approach to training deep learning...

    Full text to download in external service