Search results for: RANDOM FOREST
-
A Robust Random Forest Model for Classifying the Severity of Partial Discharges in Dielectrics
PublicationPartial Discharges (PDs) are a common source of degradation in electrical assets. It is essential that the extent of the deterioration level of insulating medium is correctly identified, to optimize maintenance schedules and prevent abrupt power outages. Temporal PD signals received from damaged insulation, collected through the IEC-60270 method is the gold standard for PD detection. Temporal signals may be transformed to the frequency...
-
Random Forest Based Power Sustainability and Cost Optimization in Smart Grid
Publication -
Random forest based power sustainability and cost optimization in smart grid
Publication -
Computer-Aided Diagnosis of COVID-19 from Chest X-ray Images Using Hybrid-Features and Random Forest Classifier
PublicationIn recent years, a lot of attention has been paid to using radiology imaging to automatically find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently. (2) Methods: Using chest X-ray images, this study proposed a cutting-edge scheme for the automatic recognition of COVID-19 and pneumonia....
-
Prediction of skin color, tanning and freckling from DNA in Polish population: linear regression, random forest and neural network approaches
Publication -
Investigating impacts of asphalt mixture properties on pavement performance using LTPP data through random forests
Publication -
A machine learning approach to classifying New York Heart Association (NYHA) heart failure
PublicationAccording to the European Society of Cardiology, globally the number of patients with heart failure nearly doubled from 33.5 million in 1990 to 64.3 million in 2017, and is further projected to increase dramatically in this decade, still remaining a leading cause of morbidity and mortality. One of the most frequently applied heart failure classification systems that physicians use is the New York Heart Association (NYHA) Functional...
-
Intelligent Decision Forest Models for Customer Churn Prediction
PublicationCustomer churn is a critical issue impacting enterprises and organizations, particularly in the emerging and highly competitive telecommunications industry. It is important to researchers and industry analysts interested in projecting customer behavior to separate churn from non‐churn consumers. The fundamental incentive is a firm’s intent desire to keep current consumers, along with the exorbitant expense of gaining new ones....
-
Forecasting energy consumption and carbon dioxide emission of Vietnam by prognostic models based on explainable machine learning and time series
PublicationThis study assessed the usefulness of algorithms in estimating energy consumption and carbon dioxide emissions in Viet- nam, in which the training dataset was used to train the models linear regression, random forest, XGBoost, and AdaBoost, allowing them to comprehend the patterns and relationships between population, GDP, and carbon dioxide emissions, energy consumption. The results revealed that random forest, XGBoost, and AdaBoost...
-
Vehicle classification based on soft computing algorithms
PublicationExperiments and results regarding vehicle type classification are presented. Three classes of vehicles are recognized: sedans, vans and trucks. The system uses a non-calibrated traffic camera, therefore no direct vehicle dimensions are used. Various vehicle descriptors are tested, including those based on vehicle mask only and those based on vehicle images. The latter ones employ Speeded Up Robust Features (SURF) and gradient images...
-
Novel analytical method for detection of orange juice adulteration based on ultra-fast gas chromatography
PublicationThe food authenticity assessment is an increasingly important issue in food quality and safety. The application of an electronic nose based on ultra-fast gas chromatography technique enables rapid analysis of the volatile compounds from food samples. Due to the fact that this technique provides chemical profiling of natural products, it can be a powerful tool for authentication in combination with chemometrics. In this article,...
-
Basic evaluation of limb exercises based on electromyography and classification methods
PublicationSymptoms caused by cerebral palsy or stroke deprive a person partially or even completely of his ability to move. Nowadays we can observe more technologically advanced rehabilitation devices which incorporate biofeedback into the process of rehabilitation of such people. However, there is still a lack of devices that would analyse, assess, and control (independently or with limited support) specialised movement exercises. Here...
-
Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data
PublicationThis paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost...
-
Personal bankruptcy prediction using machine learning techniques
PublicationIt has become crucial to have an early prediction model that provides accurate assurance for users about the financial situation of consumers. Recent studies have focused on predicting corporate bankruptcies and credit defaults, not personal bankruptcies. Due to this situation, the present study fills the literature gap by comparing different machine learning algorithms to predict personal bankruptcy. The main objective of the...
-
A Machine Learning Approach for Estimating Overtime Allocation in Software Development Projects
PublicationOvertime planning in software projects has traditionally been approached with search-based multi-objective optimization algorithms. However, the explicit solutions produced by these algorithms often lack applicability and acceptance in the software industry due to their disregard for project managers' intuitive knowledge. This study presents a machine learning model that learns the preferred overtime allocation patterns from solutions...
-
Integrated model for the fast assessment of flood volume: Modelling – management, uncertainty and sensitivity analysis
PublicationThe specific flood volume is an important criterion for assessing the performance of sewage networks. It has been shown that its value is greatly influenced by the layout of the sewers in the catchment area, which is usually expressed by a fractal dimension. Currently, only mechanistic models (such as SWMM) enable the determination of the impact of the layout of the sewers on flooding volume, but they require additional and robust...
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublicationCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
Anomaly Detection in Railway Sensor Data Environments: State-of-the-Art Methods and Empirical Performance Evaluation
PublicationTo date, significant progress has been made in the field of railway anomaly detection using technologies such as real-time data analytics, the Internet of Things, and machine learning. As technology continues to evolve, the ability to detect and respond to anomalies in railway systems is once again in the spotlight. However, railway anomaly detection faces challenges related to the vast infrastructure, dynamic conditions, aging...
-
Efficiency of Artificial Intelligence Methods for Hearing Loss Type Classification: an Evaluation
PublicationThe evaluation of hearing loss is primarily conducted by pure tone audiometry testing, which is often regarded as golden standard for assessing auditory function. If the presence of hearing loss is determined, it is possible to differentiate between three types of hearing loss: sensorineural, conductive, and mixed. This study presents a comprehensive comparison of a variety of AI classification models, performed on 4007 pure tone...
-
Comparison of Classification Methods for EEG Signals of Real and Imaginary Motion
PublicationThe classification of EEG signals provides an important element of brain-computer interface (BCI) applications, underlying an efficient interaction between a human and a computer application. The BCI applications can be especially useful for people with disabilities. Numerous experiments aim at recognition of motion intent of left or right hand being useful for locked-in-state or paralyzed subjects in controlling computer applications....
-
Offshore benthic habitat mapping based on object-based image analysis and geomorphometric approach. A case study from the Slupsk Bank, Southern Baltic Sea
PublicationBenthic habitat mapping is a rapidly growing field of underwater remote sensing studies. This study provides the first insight for high-resolution hydroacoustic surveys in the Slupsk Bank Natura 2000 site, one of the most valuable sites in the Polish Exclusive Zone of the Southern Baltic. This study developed a quick and transparent, automatic classification workflow based on multibeam echosounder and side-scan sonar surveys to...
-
Sampling-based novel heterogeneous multi-layer stacking ensemble method for telecom customer churn prediction
PublicationIn recent times, customer churn has become one of the most significant issues in business-oriented sectors with telecommunication being no exception. Maintaining current customers is particularly valuable due to the high degree of rivalry among telecommunication companies and the costs of acquiring new ones. The early prediction of churned customers may help telecommunication companies to identify the causes of churn and design...
-
Application of multisensoral remote sensing data in the mapping of alkaline fens Natura 2000 habitat
PublicationThe Biebrza River valley (NE Poland) is distinguished by largely intact, highly natural vegetation patterns and very good conservation status of wetland ecosystems. In 20132014, studies were conducted in the upper Biebrza River basin to develop a remote sensing method for alkaline fen classification a protected Natura 2000 habitat (code 7230) using remote sensing technologies. High resolution airborne true colour (RGB) and...
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublicationFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
News that Moves the Market: DSEX-News Dataset for Forecasting DSE Using BERT
PublicationStock market is a complex and dynamic industry that has always presented challenges for stakeholders and investors due to its unpredictable nature. This unpredictability motivates the need for more accurate prediction models. Traditional prediction models have limitations in handling the dynamic nature of the stock market. Additionally, previous methods have used less relevant data, leading to suboptimal performance. This study...
-
Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach
PublicationTreatment of municipal wastewater to meet the stringent effluent quality standards is an energy-intensive process and the main contributor to the costs of wastewater treatment plants (WWTPs). Analysis and prediction of energy consumption (EC) are essential in designing and operating sustainable energy-saving WWTPs. In this study, the effect of wastewater, hydraulic, and climate-based parameters on the daily consumption of EC by...
-
The Use of Ultra-Fast Gas Chromatography for Fingerprinting-Based Classification of Zweigelt and Rondo Wines with Regard to Grape Variety and Type of Malolactic Fermentation Combined with Greenness and Practicality Assessment
PublicationIn food authentication, it is important to compare different analytical procedures and select the best method. The aim of this study was to determine the fingerprints of Zweigelt and Rondo wines through headspace analysis using ultra-fast gas chromatography (ultra-fast GC) and to compare the effectiveness of this approach at classifying wines based on grape variety and type of malolactic fermentation (MLF) as well as its greenness...
-
Intracranial hemorrhage detection in 3D computed tomography images using a bi-directional long short-term memory network-based modified genetic algorithm
PublicationIntroduction: Intracranial hemorrhage detection in 3D Computed Tomography (CT) brain images has gained more attention in the research community. The major issue to deal with the 3D CT brain images is scarce and hard to obtain the labelled data with better recognition results. Methods: To overcome the aforementioned problem, a new model has been implemented in this research manuscript. After acquiring the images from the Radiological...
-
Employing Subjective Tests and Deep Learning for Discovering the Relationship between Personality Types and Preferred Music Genres
PublicationThe purpose of this research is two-fold: (a) to explore the relationship between the listeners’ personality trait, i.e., extraverts and introverts and their preferred music genres, and (b) to predict the personality trait of potential listeners on the basis of a musical excerpt by employing several classification algorithms. We assume that this may help match songs according to the listener’s personality in social music networks....
-
Comparative study on total nitrogen prediction in wastewater treatment 1 plant and effect of various feature selection methods on machine learning algorithms performance
PublicationWastewater characteristics prediction in wastewater treatment plants (WWTPs) is valuable and can reduce the number of sampling, energy, and cost. Feature Selection (FS) methods are used in the pre-processing section for enhancing the model performance. This study aims to evaluate the effect of seven different FS methods (filter, wrapper, and embedded methods) on enhancing the prediction accuracy for total nitrogen (TN) in the WWTP...
-
Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
PublicationNitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, model predictions...
-
Machine Learning-Based Wetland Vulnerability Assessment in the Sindh Province Ramsar Site Using Remote Sensing Data
PublicationWetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote sensing data from 2000 to 2020 was analyzed through spectral...
-
On the Role of Polarimetric Decomposition and Speckle Filtering Methods for C-Band SAR Wetland Classification Purposes
PublicationPrevious wetlands studies have thoroughly verified the usefulness of data from synthetic aperture radar (SAR) sensors in various acquisition modes. However, the effect of the processing parameters in wetland classification remains poorly explored. In this study, we investigated the influence of speckle filters and decomposition methods with different combinations of filter and decomposition windows sizes on classification accuracy....
-
Study of various machine learning approaches for Sentinel-2 derived bathymetry
PublicationIn recent years precise and up-to-date information regarding seabed depth has become more and more important for companies and institutions that operate on coastlines. While direct, in-situ measurements are performed regularly, they are expensive, time-consuming and impractical to be performed in short time intervals. At the same time, an ever-increasing amount of satellite imaging data becomes available. With these images, it...
-
Underground Water Level Prediction in Remote Sensing Images Using Improved Hydro Index Value with Ensemble Classifier
PublicationThe economic sustainability of aquifers across the world relies on accurate and rapid estimates of groundwater storage changes, but this becomes difficult due to the absence of insitu groundwater surveys in most areas. By closing the water balance, hydrologic remote sensing measures offer a possible method for quantifying changes in groundwater storage. However, it is uncertain to what extent remote sensing data can provide an...
-
Empirical analysis of tree-based classification models for customer churn prediction
PublicationCustomer churn is a vital and reoccurring problem facing most business industries, particularly the telecommunications industry. Considering the fierce competition among telecommunications firms and the high expenses of attracting and gaining new subscribers, keeping existing loyal subscribers becomes crucial. Early prediction of disgruntled subscribers can assist telecommunications firms in identifying the reasons for churn and...
-
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublicationThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...
-
Study of Multi-Class Classification Algorithms’ Performance on Highly Imbalanced Network Intrusion Datasets
PublicationThis paper is devoted to the problem of class imbalance in machine learning, focusing on the intrusion detection of rare classes in computer networks. The problem of class imbalance occurs when one class heavily outnumbers examples from the other classes. In this paper, we are particularly interested in classifiers, as pattern recognition and anomaly detection could be solved as a classification problem. As still a major part of...
-
Genetic variations as predictors of dispositional and dyadic empathy - a couple study
PublicationBiological drivers of empathy have been explored in an interdisciplinary manner for decades. Research that merges the psychological and genetic perspectives of empathy has recently gained interest, and more complex designs and analyses are needed. Empathy is a multidimensional construct that might be regarded both dispositionally (as a personality trait) and contextually (experienced and/or expressed in a particular relationship/situation)....
-
Audio Feature Analysis for Precise Vocalic Segments Classification in English
PublicationAn approach to identifying the most meaningful Mel-Frequency Cepstral Coefficients representing selected allophones and vocalic segments for their classification is presented in the paper. For this purpose, experiments were carried out using algorithms such as Principal Component Analysis, Feature Importance, and Recursive Parameter Elimination. The data used were recordings made within the ALOFON corpus containing audio signal...