Filtry
wszystkich: 1528
wybranych: 1240
-
Katalog
- Publikacje 1240 wyników po odfiltrowaniu
- Czasopisma 48 wyników po odfiltrowaniu
- Konferencje 69 wyników po odfiltrowaniu
- Osoby 63 wyników po odfiltrowaniu
- Projekty 2 wyników po odfiltrowaniu
- Kursy Online 34 wyników po odfiltrowaniu
- Wydarzenia 5 wyników po odfiltrowaniu
- Dane Badawcze 67 wyników po odfiltrowaniu
Filtry wybranego katalogu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: artificial intelligence, machine learning, cnn, neural networks, optimization algorithms
-
Applying artificial intelligence for cellular networks optimization
Publikacja -
Neural Networks, Support Vector Machine and Genetic Algorithms for Autonomous Underwater Robot Support
PublikacjaIn this paper, artificial neural networks, a classification technique called support vector machine and meta-heuristics genetic algorithm have been considered for development in autonomous underwater robots. Artificial neural networks have been used for seabed modelling as well as support vector machine has been applied for the obstacles classification to avoid some collision problems. Moreover, genetic algorithm has been applied...
-
Optimization of a three-bed adsorption chiller by genetic algorithms and neural networks
Publikacja -
Perception of Pathologists in Poland of Artificial Intelligence and Machine Learning in Medical Diagnosis—A Cross-Sectional Study
Publikacja -
Cost-Efficient Multi-Objective Design of Miniaturized Microwave Circuits Using Machine Learning and Artificial Neural Network
PublikacjaDesigning microwave components involves managing multiple objectives such as center frequencies, impedance matching, and size reduction for miniaturized structures. Traditional multi-objective optimization (MO) approaches heavily rely on computationally expensive population-based methods, especially when exe-cuted with full-wave electromagnetic (EM) analysis to guarantee reliability. This paper introduces a novel and cost-effective...
-
Comparison of selected clustering algorithms of raw data obtained by interferometric methods using artificial neural networks
Publikacja -
Machine Learning- and Artificial Intelligence-Derived Prediction for Home Smart Energy Systems with PV Installation and Battery Energy Storage
Publikacja -
Bibliometric analysis of artificial intelligence in wastewater treatment: Current status, research progress, and future prospects
PublikacjaWastewater treatment is an important topic for improving water quality and environmental protection, and artificial intelligence has become a powerful tool for wastewater treatment. This work provides research progress and a literature review of artificial intelligence applied to wastewater treatment based on the visualization of bibliometric tools. A total of 3460 publications from 2000 to 2023 were obtained from the Web of Science...
-
Artificial Neural Networks as an architectural design tool- generating new detail forms based on the Roman Corinthian order capital
PublikacjaThe following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital....
-
THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN
PublikacjaIn the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...
-
Data governance: Organizing data for trustworthy Artificial Intelligence
PublikacjaThe rise of Big, Open and Linked Data (BOLD) enables Big Data Algorithmic Systems (BDAS) which are often based on machine learning, neural networks and other forms of Artificial Intelligence (AI). As such systems are increasingly requested to make decisions that are consequential to individuals, communities and society at large, their failures cannot be tolerated, and they are subject to stringent regulatory and ethical requirements....
-
Machine Learning and Text Analysis in an Artificial Intelligent System for the Training of Air Traffic Controllers
PublikacjaThis chapter presents the application of new information technology in education for the training of air traffic controllers (ATCs). Machine learning, multi-criteria decision analysis, and text analysis as the methods of artificial intelligence for ATCs training have been described. The authors have made an analysis of the International Civil Aviation Organization documents for modern principles of ATCs education. The prototype...
-
Deep Learning: A Case Study for Image Recognition Using Transfer Learning
PublikacjaDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Deep Learning
PublikacjaDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Pedestrian detection in low-resolution thermal images
PublikacjaOver one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...
-
University Students’ Research on Artificial Intelligence and Knowledge Management. A Review and Report of Multi-case Studies
PublikacjaLeading technologies are very attractive for students preparing their theses as the completion of their studies. Such an orientation of students connected with professional experiences seems to be a crucial motivator in the research in the management and business areas where these technologies condition the development of professional activities. The goal of the paper is the analysis of students’ thesis topics defended in the last...
-
Neural network training with limited precision and asymmetric exponent
PublikacjaAlong with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...
-
Sensing Direction of Human Motion Using Single-Input-Single-Output (SISO) Channel Model and Neural Networks
PublikacjaObject detection Through-the-Walls enables localization and identification of hidden objects behind the walls. While numerous studies have exploited Channel State Information of Multiple Input Multiple Output (MIMO) WiFi and radar devices in association with Artificial Intelligence based algorithms (AI) to detect and localize objects behind walls, this study proposes a novel non-invasive Through-the-Walls human motion direction...
-
Metody sztucznej inteligencji do wspomagania bankowych systemów informatycznych
PublikacjaW pracy opisano zastosowania nowoczesnych metod sztucznej inteligencji do wspomagania bankowych systemów informatycznych. Wykorzystanie w systemach informatycznych algorytmów ewolucyjnych, harmonicznych, czy sztucznych sieci neuronowych w połączeniu z nowoczesną technologią mikroprocesorową umożliwiają zasadniczy wzrost konkurencyjności banku. Dlatego w pracy omówiono wybrane zastosowania bankowe ze szczególnym uwzględnieniem zbliżeniowych...
-
Przegląd metod szybkiego prototypowania algorytmów uczenia maszynowego w FPGA
PublikacjaW artykule opisano możliwe do wykorzystania otwarte narzędzia wspomagające szybkie prototypowanie algorytmów uczenia maszynowego (ML) i sztucznej inteligencji (AI) przy użyciu współczesnych platform FPGA. Przedstawiono przykład szybkiej ścieżki przy realizacji toru wideo wraz z implementacją przykładowego algorytmu prze-twarzania w trybie na żywo.
-
Buried Object Characterization Using Ground Penetrating Radar Assisted by Data-Driven Surrogate-Models
PublikacjaThis work addresses artificial-intelligence-based buried object characterization using 3-D full-wave electromagnetic simulations of a ground penetrating radar (GPR). The task is to characterize cylindrical shape, perfectly electric conductor (PEC) object buried in various dispersive soil media, and in different positions. The main contributions of this work are (i) development of a fast and accurate data driven surrogate modeling...
-
Identyfikacja instrumentu muzycznego z nagrania fonicznego za pomocą sztucznych sieci neuronowych
PublikacjaCelem rozprawy jest zbadanie algorytmów do identyfikacji instrumentów występujących w sygnale polifonicznym z wykorzystaniem sztucznych sieci neuronowych. W części teoretycznej przywołano podstawy przetwarzania sygnałów fonicznych w kontekście ekstrakcji parametrów sygnałów wykorzystywanych w treningu sieci neuronowych. Dodatkowo dokonano analizy rozwoju metod uczenia maszynowego z uwzględnieniem podziału na sieci neuronowe pierwszej,...
-
Optymalizacja treningu i wnioskowania sieci neuronowych
PublikacjaSieci neuronowe są jedną z najpopularniejszych i najszybciej rozwijających się dziedzin sztucznej inteligencji. Ich praktyczne wykorzystanie umożliwiło szersze użycie komputerów w wielu obszarach komunikacji, przemysłu i transportu. Dowody tego są widoczne w elektronice użytkowej, medycynie, a nawet w zastosowaniach militarnych. Wykorzystanie sztucznej inteligencji w wielu przypadkach wymaga jednak znacznej mocy obliczeniowej,...
-
How Can We Identify Electrophysiological iEEG Activities Associated with Cognitive Functions?
PublikacjaElectrophysiological activities of the brain are engaged in its various functions and give rise to a wide spectrum of low and high frequency oscillations in the intracranial EEG (iEEG) signals, commonly known as the brain waves. The iEEG spectral activities are distributed across networks of cortical and subcortical areas arranged into hierarchical processing streams. It remains a major challenge to identify these activities in...
-
From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland
PublikacjaFlood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...
-
Inteligentne systemy agentowe w systemach zdalnego nauczania
PublikacjaW pracy omówiono inteligentne systemy agentowe w systemach zdalnego nauczania. Po krótkim przedstawieniu ewolucji systemów zdalnego nauczania i ich wybranych zastosowań, scharakteryzowano inteligentne agenty edukacyjne. Omówiono wykorzystanie programowania genetycznego oraz algorytmów neuro-ewolucyjnych do implementacji oprogramowania tej klasy. Ponadto, nawiązano do modelu Map-Reduce, który efektywnie wspiera architekturę nowoczesnego...
-
Wykorzystanie sztucznych sieci neuronowych do szacowania wpływu drgań na budynki jednorodzinne
PublikacjaW artykule przedstawiono metodę prognozowania wpływu drgań na budynki mieszkalne z wykorzystaniem sztucznych sieci neuronowych. Drgania komunikacyjne mogą doprowadzić do uszkodzenia elementów konstrukcyjnych, a nawet do awarii budynku. Najczęstszym efektem są jednak rysy, pękanie tynku i wypraw. Metody oparte na sztucznej inteligencji są przybliżone, ale stanowią wystarczająco dokładną i ekonomiczną alternatywę dla tradycyjnych...
-
The impact of the AC922 Architecture on Performance of Deep Neural Network Training
PublikacjaPractical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublikacjaW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wykorzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublikacjaW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wyko-rzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
Halucynacje chatbotów a prawda: główne nurty debaty i ich interpretacje
PublikacjaGeneratywne systemy sztucznej inteligencji (SI) są w stanie tworzyć treści medialne poprzez zastosowanie uczenia maszynowego do dużych ilości danych szkoleniowych. Te nowe dane mogą obejmować tekst (np. Bard firmy Google, LLaMa firmy Meta lub ChatGPT firmy OpenAI) oraz elementy wizualne (np. Stable Diffusion lub DALL-E OpenAI) i dźwięk (np. VALL-E firmy Micro- soft). Stopień zaawansowania tych treści może czynić je nieodróżnialnymi...
-
Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia
PublikacjaW pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...
-
Neural networks and deep learning
PublikacjaIn this chapter we will provide the general and fundamental background related to Neural Networks and Deep Learning techniques. Specifically, we divide the fundamentals of deep learning in three parts, the first one introduces Deep Feed Forward Networks and the main training algorithms in the context of optimization. The second part covers Convolutional Neural Networks (CNN) and discusses their main advantages and shortcomings...
-
Adaptacyjny system oświetlania dróg oraz inteligentnych miast
PublikacjaPrzedmiotem rozprawy jest zbadanie praktycznej możliwości wykrywania w czasie rzeczywistym anomalii w systemie oświetlenia drogowego w oparciu o analizę danych ze inteligentnych liczników energii. Zastosowanie inteligentnych liczników energii elektrycznej (Smart Meter) w systemach oświetlenia drogowego stwarza nowe możliwości w zakresie automatycznej diagnostyki takich niepożądanych zjawisk jak awarie lamp, odstępstwa od harmonogramu...
-
Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction
PublikacjaThis work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil medium simultaneously and independently...
-
Robust and Efficient Machine Learning Algorithms for Visual Recognition
PublikacjaIn visual recognition, the task is to identify and localize all objects of interest in the input image. With the ubiquitous presence of visual data in modern days, the role of object recognition algorithms is becoming more significant than ever and ranges from autonomous driving to computer-aided diagnosis in medicine. Current models for visual recognition are dominated by models based on Convolutional Neural Networks (CNNs), which...
-
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
PublikacjaThis paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...
-
A MODEL FOR FORECASTING PM10 LEVELS WITH THE USE OF ARTIFICIAL NEURAL NETWORKS
PublikacjaThis work presents a method of forecasting the level of PM10 with the use of artificial neural networks. Current level of particulate matter and meteorological data was taken into account in the construction of the model (checked the correlation of each variable and the future level of PM10), and unidirectional networks were used to implement it due to their ease of learning. Then, the configuration of the network (built on the...
-
Prognozowanie wpływu drgań komunikacyjnych na budynki mieszkalne za pomocą sztucznych sieci neuronowych i maszyn wektorów wspierających
PublikacjaDrgania komunikacyjne mogą stanowić duże obciążenie eksploatacyjne budynku, powodując zarysowania i spękania tynków, odpadanie wypraw, zarysowania konstrukcji, pękanie elementów konstrukcji lub nawet zawalenie się budynku. Pomiary drgań na rzeczywistych konstrukcjach są pracochłonne i kosztowne, a co ważne nie w każdym przypadku są one uzasadnione. Celem pracy jest analiza autorskiego algorytmu, dzięki któremu z dużym prawdopodobieństwem...
-
Artificial Intelligence Aided Architectural Design
PublikacjaTools and methods used by architects always had an impact on the way building were designed. With the change in design methods and new approaches towards creation process, they became more than ever before crucial elements of the creation process. The automation of architects work has started with computational functions that were introduced to traditional computer-aided design tools. Nowadays architects tend to use specified tools...
-
Ship Resistance Prediction with Artificial Neural Networks
PublikacjaThe paper is dedicated to a new method of ship’s resistance prediction using Artificial Neural Network (ANN). In the initial stage selected ships parameters are prepared to be used as a training and validation sets. Next step is to verify several network structures and to determine parameters with the highest influence on the result resistance. Finally, other parameters expected to impact the resistance are proposed. The research utilizes...
-
Supply current signal and artificial neural networks in the induction motor bearings diagnostics
PublikacjaThis paper contains research results of the diagnostics of induction motor bearings based on measurement of the supply current with usage of artificial neural networks. Bearing failure amount is greater than 40% of all engine failures, which makes their damage-free operation crucial. Tests were performed on motors with intentionally made bearings defects. Chapter 2 introduces the concept of artificial neural networks. It presents...
-
USING ARTIFICIAL NEURAL NETWORKS FOR PREDICTING SHIP FUEL CONSUMPTION
PublikacjaIn marine vessel operations, fuel costs are major operating costs which affect the overall profitability of the maritime transport industry. The effective enhancement of using ship fuel will increase ship operation efficiency. Since ship fuel consumption depends on different factors, such as weather, cruising condition, cargo load, and engine condition, it is difficult to assess the fuel consumption pattern for various types...
-
Predicting the impact of traffic–induced vibrations on buildings using artificial neural networks
PublikacjaTraffic–induced vibrations may constitute a considerable load to a building, cause cracking of plaster, cracks in load–bearing elements or even a global structural collapse of the whole structure [1-4]. Vibrations measurements of real structures are costly and laborious, not justified in all cases. The aim of the paper is to create an original algorithm, to predict the negative dynamic impact on the examined residential building...
-
Machine Learning in Multi-Agent Systems using Associative Arrays
PublikacjaIn this paper, a new machine learning algorithm for multi-agent systems is introduced. The algorithm is based on associative arrays, thus it becomes less complex and more efficient substitute of artificial neural networks and Bayesian networks, which is confirmed by performance measurements. Implementation of machine learning algorithm in multi-agent system for aided design of selected control systems allowed to improve the performance...
-
A Selection of Starting Points for Iterative Position Estimation Algorithms Using Feedforward Neural Networks
PublikacjaThis article proposes the use of a feedforward neural network (FNN) to select the starting point for the first iteration in well-known iterative location estimation algorithms, with the research objective of finding the minimum size of a neural network that allows iterative position estimation algorithms to converge in an example positioning network. The selected algorithms for iterative position estimation, the structure of the...
-
Speech Analytics Based on Machine Learning
PublikacjaIn this chapter, the process of speech data preparation for machine learning is discussed in detail. Examples of speech analytics methods applied to phonemes and allophones are shown. Further, an approach to automatic phoneme recognition involving optimized parametrization and a classifier belonging to machine learning algorithms is discussed. Feature vectors are built on the basis of descriptors coming from the music information...
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublikacjaIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
Explainable AI for Inspecting Adversarial Attacks on Deep Neural Networks
PublikacjaDeep Neural Networks (DNN) are state of the art algorithms for image classification. Although significant achievements and perspectives, deep neural networks and accompanying learning algorithms have some important challenges to tackle. However, it appears that it is relatively easy to attack and fool with well-designed input samples called adversarial examples. Adversarial perturba-tions are unnoticeable for humans. Such attacks...
-
Obtaining a Well-Trained Artificial Intelligence Algorithm from Cross-Validation in Endoscopy
PublikacjaThe article shortly discusses endoscopic video analysis problems and artificial intelligence algorithms supporting it. The most common method of efficiency testing of these algorithms is to perform intensive cross-validation. This allows for accurately evaluate their performance of generalization. One of the main problems of this procedure is that there is no simple and universal way of obtaining a specific instance of a well-trained...