Filtry
wszystkich: 912
wybranych: 797
Wyniki wyszukiwania dla: machine design
-
Scientific research in the Department of Machine Design and Automotive Engineering
PublikacjaShort descriptions of various research subjects taken up at the Department of Machine Design and Automotive Engineering are included in the paper. The subjects cover a wide range of bearing systems and tribology research and the research on tires and road surfaces. A third field of activity is biomedical engineering – with the attempts to improve methods of modelling biological materials in FEM calculations. The Department has...
-
Machine Learning Techniques in Concrete Mix Design
PublikacjaConcrete mix design is a complex and multistage process in which we try to find the best composition of ingredients to create good performing concrete. In contemporary literature, as well as in state-of-the-art corporate practice, there are some methods of concrete mix design, from which the most popular are methods derived from The Three Equation Method. One of the most important features of concrete is compressive strength, which...
-
Concrete mix design using machine learning
PublikacjaDesigning a concrete mix is a process of synthesizing many components, it is not a simple process and requires extensive technical knowledge. The design process itself focuses on obtaining the required strength of concrete. Very often designing a concrete mix takes into account the need to maintain the proper water-demand and frost-resistance features. The parameters that influence the concrete class most significantly are the...
-
The methodology of design of satellite working mechanism of positive displacement machine
PublikacjaIn this paper is described a methodology of design of satellite mechanism consisting of two noncircular gears (externally toothed rotor and internally toothed curvature) and circular gears (satellites). In the presented methodology is assumed that the rotor pitch line is known, and the curvature pitch line is necessary to designate. The presented methodology applies to mechanisms for which the number of the curvature humps is at...
-
Performance Evaluation of an Axial Flux Machine with a Hybrid Excitation Design
Publikacja -
Model-Based Adaptive Machine Learning Approach in Concrete Mix Design
PublikacjaConcrete mix design is one of the most critical issues in concrete technology. This process aims to create a concrete mix which helps deliver concrete with desired features and quality. Contemporary requirements for concrete concern not only its structural properties, but also increasingly its production process and environmental friendliness, forcing concrete producers to use both chemically and technologically complex concrete...
-
<title>Management system of ELHEP cluster machine for FEL photonics design</title>
Publikacja -
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
PublikacjaThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...
-
The methodology of design of axial clearances compensation unit in hydraulic satellite displacement machine and their experimental verification
PublikacjaA new methodology of calculating the dimensions of the axial clearance compensation unit in the hydraulic satellite displacement machine is described in this paper. The methods of shaping the compensation unit were also proposed and described. These methods were used to calculate the geometrical dimensions of the compensation field in an innovative prototype of a satellite hydraulic motor. This motor is characterized by the fact...
-
Machine-Learning-Powered EM-Based Framework for Efficient and Reliable Design of Low Scattering Metasurfaces
PublikacjaPopularity of metasurfaces has been continuously growing due to their attractive properties including the ability to effectively manipulate electromagnetic (EM) waves. Metasurfaces comprise optimized geometries of unit cells arranged as a periodic lattice to obtain a desired EM response. One of their emerging application areas is the stealth technology, in particular, realization of radar cross section (RCS) reduction. Despite...
-
Cost-Efficient Multi-Objective Design of Miniaturized Microwave Circuits Using Machine Learning and Artificial Neural Network
PublikacjaDesigning microwave components involves managing multiple objectives such as center frequencies, impedance matching, and size reduction for miniaturized structures. Traditional multi-objective optimization (MO) approaches heavily rely on computationally expensive population-based methods, especially when exe-cuted with full-wave electromagnetic (EM) analysis to guarantee reliability. This paper introduces a novel and cost-effective...
-
Machine Learning Algorithm-Based Tool and Digital Framework for Substituting Daylight Simulations In Early- Stage Architectural Design Evaluation
PublikacjaThe aim of this paper is to examine the new method of obtaining the simulation-based results using backpropagation of errors artificial neural networks. The primary motivation to conduct the research was to determine an alternative, more efficient and less timeconsuming method which would serve to achieve the results of daylight simulations. Three daylight metrics: Daylight Factor, Daylight Autonomy and Daylight Glare Probability have...
-
Expedited Machine-Learning-Based Global Design Optimization of Antenna Systems Using Response Features and Multi-Fidelity EM Analysis
PublikacjaThe design of antenna systems poses a significant challenge due to stringent per-formance requirements dictated by contemporary applications and the high com-putational costs associated with models, particularly full-wave electromagnetic (EM) analysis. Presently, EM simulation plays a crucial role in all design phases, encompassing topology development, parametric studies, and the final adjustment of antenna dimensions. The latter...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublikacjaDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Experimental and Machine-Learning-Assisted Design of Pharmaceutically Acceptable Deep Eutectic Solvents for the Solubility Improvement of Non-Selective COX Inhibitors Ibuprofen and Ketoprofen
PublikacjaDeep eutectic solvents (DESs) are commonly used in pharmaceutical applications as excellent solubilizers of active substances. This study investigated the tuning of ibuprofen and ketoprofen solubility utilizing DESs containing choline chloride or betaine as hydrogen bond acceptors and various polyols (ethylene glycol, diethylene glycol, triethylene glycol, glycerol, 1,2-propanediol, 1,3-butanediol) as hydrogen bond donors. Experimental...
-
Assessment of Failure Occurrence Rate for Concrete Machine Foundations Used in Gas and Oil Industry by Machine Learning
PublikacjaConcrete machine foundations are structures that transfer loads from machines in operation to the ground. The design of such foundations requires a careful analysis of the static and dynamic effects caused by machine exploitation. There are also other substantial differences between ordinary concrete foundations and machine foundations, of which the main one is that machine foundations are separated from the building structure....
-
EMPIRICAL ASSESMENT OF THE MAIN DRIVING SYSTEM OF THE CIRCULAR SAWING MACHINE
PublikacjaThe producers of panel saws tend to improve sawing accuracy and minimise a level of vibrations, to increase their competitiveness at the market. Mechanical vibrations in the main saw driving system, which level depend on a plethora independent factors, may really affect sawing accuracy and general machine tool vibrations. The objective of the research was to explore vibrations signals of the main spindle system, and to extract...
-
Machine Learning in Multi-Agent Systems using Associative Arrays
PublikacjaIn this paper, a new machine learning algorithm for multi-agent systems is introduced. The algorithm is based on associative arrays, thus it becomes less complex and more efficient substitute of artificial neural networks and Bayesian networks, which is confirmed by performance measurements. Implementation of machine learning algorithm in multi-agent system for aided design of selected control systems allowed to improve the performance...
-
Designing acoustic scattering elements using machine learning methods
PublikacjaIn the process of the design and correction of room acoustic properties, it is often necessary to select the appropriate type of acoustic treatment devices and make decisions regarding their size, geometry, and location of the devices inside the room under the treatment process. The goal of this doctoral dissertation is to develop and validate a mathematical model that allows predicting the effects of the application of the scattering...
-
Dangerous sound event recognition using Support Vector Machine classifiers
PublikacjaA method of recognizing events connected to danger based on their acoustic representation through Support Vector Machine classification is presented. The method proposed is particularly useful in an automatic surveillance system. The set of 28 parameters used in the classifier consists of dedicated parameters and MPEG-7 features. Methods for parameter calculation are presented, as well as a design of SVM model used for classification....
-
Antenna Optimization Using Machine Learning with Reduced-Dimensionality Surrogates
PublikacjaIn modern times, antenna design has become more demanding than ever. The escalating requirements for performance and functionality drive the development of intricately structured antennas, where parameters must be meticulously adjusted to achieve peak performance. Often, global adjustments to geometry are necessary for optimal results. However, direct manipulation of antenna responses evaluated with full-wave electromagnetic (EM)...
-
Optimization of chip removing system operation in circular sawing machine
PublikacjaThe paper presents the optimization of the wood chips removing system in the sliding table saw. Chips are generated during the cutting of the material. The attention was focused on the upper casing of mentioned system. The methodical experimental studies of the pressure distribution inside the casing during the wood chip removing operation for the selected rotational speed of saw blade with a diameter of 300 mm and 450 mm were...
-
Variable Resolution Machine Learning Optimization of Antennas Using Global Sensitivity Analysis
PublikacjaThe significance of rigorous optimization techniques in antenna engineering has grown significantly in recent years. For many design tasks, parameter tuning must be conducted globally, presenting a challenge due to associated computational costs. The popular bio-inspired routines often necessitate thousands of merit function calls to converge, generating prohibitive expenses whenever the design process relies on electromagnetic...
-
Slowly-closing valve behaviour during steam machine accelerated start-up
PublikacjaThe paper discusses the state of stress in a slowly-closing valve during accelerated start-up of a steam turbine. The valve is one of the first components affected by high temperature gradients and is a key element on which the power, efficiency and safety of the steam system depend. The authors calibrated the valve model based on experimental data and then performed extended Thermal-FSI analyses relative to experiment. The issue...
-
Modeling lignin extraction with ionic liquids using machine learning approach
PublikacjaLignin, next to cellulose, is the second most common natural biopolymer on Earth, containing a third of the organic carbon in the biosphere. For many years, lignin was perceived as waste when obtaining cellulose and hemicellulose and used as a biofuel for the production of bioenergy. However, recently, lignin has been considered a renewable raw material for the production of chemicals and materials to replace petrochemical resources....
-
Predicting emotion from color present in images and video excerpts by machine learning
PublikacjaThis work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...
-
Experimental examination and modification of chip suction system in circular sawing machine
PublikacjaThe article presents the results of experimental examination of the wood chip suction system in the existing sliding table saw before and after its modifi cation. The studies focused on the extraction hood of the mentioned system. The methodical experimental research of the pressure distribution inside the hood during wood chip removal for the selected rotational speed of saw blades of 3500 and 6000 min-1 with a diameter of 300...
-
Experimental tuning of AuAg nanoalloy plasmon resonances assisted by machine learning method
PublikacjaPlasmonic nanostructures based on AuAg nanoalloys were fabricated by thermal annealing of metallic films in an argon atmosphere. The nanoalloys were chosen because they can extend the wavelength range in which plasmon resonance occurs and thus allow the design of plasmonic platforms with the desired parameters. The influence of initial fabrication parameters and experimental conditions on the formation of nanostructures was investigated....
-
Machine learning approach to packaging compatibility testing in the new product development process
PublikacjaThe paper compares the effectiveness of selected machine learning methods as modelling tools supporting the selection of a packaging type in new product development process. The main goal of the developed model is to reduce the risk of failure in compatibility tests which are preformed to ensure safety, durability, and efficacy of the finished product for the entire period of its shelf life and consumer use. This kind of testing...
-
Speed observer of induction machine based on backstepping and sliding mode for low‐speed operation
PublikacjaThis paper presents a speed observer design based on backstepping and slidingmode approaches. The inputs to the observer are the stator current and thevoltage vector components. This observer structure is extended to the integra-tors. The observer stabilizing functions contain the appropriate sliding surfaceswhich result from the Lyapunov function. The rotor angular speed is obtainedfrom the non‐adaptive formula with a sliding...
-
Load effect impact on the exploitation of concrete machine foundations used in the gas and oil industry
PublikacjaMachine foundations is a critical topic in the gas and oil industry, which design and exploitation require extensive technical knowledge. Machine foundations are the constructions which are intended for mounting on it a specific type of machine. The foundation has to transfer dynamic and static load from machine to the ground. The primary difference between machine foundations and building foundations is that the machine foundations...
-
Fast Machine-Learning-Enabled Size Reduction of Microwave Components Using Response Features
PublikacjaAchieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended,...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublikacjaMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Numerical analysis of chip removing system operation in circular sawing machine using CFD software
PublikacjaPaper presents the analysis of the results of numerical simulations of the air flow process of wood chips removing system in the circular sawing machine. The attention is focused on the upper cover and bottom shelter of the chip removing system. Within the framework of the work a systematic numerical modeling of the air flow distribution in the cover and shelter during operation of the selected rotational speed of saw blade with...
-
Machine-Learning Methods for Estimating Performance of Structural Concrete Members Reinforced with Fiber-Reinforced Polymers
PublikacjaIn recent years, fiber-reinforced polymers (FRP) in reinforced concrete (RC) members have gained significant attention due to their exceptional properties, including lightweight construction, high specific strength, and stiffness. These attributes have found application in structures, infrastructures, wind power equipment, and various advanced civil products. However, the production process and the extensive testing required for...
-
BETWEEN IDEA AND INTERPRETATION - DESIGN PROCESS AUGMENTATION
PublikacjaThe following paper investigates the idea of reducing the human digital intervention to a minimum during the advanced design process. Augmenting the outcome attributes beyond the designer's capabilities by computational design methods, data collection, data computing and digital fabrication, altogether imitating the human design process. The primary technical goal of the research was verification of restrictions and abilities used...
-
Machine-Learning-Based Global Optimization of Microwave Passives with Variable-Fidelity EM Models and Response Features
PublikacjaMaximizing microwave passive component performance demands precise parameter tuning, particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a comprehensive approach due to their complex geometries and miniaturized structures. However, the computational burden of optimizing these components via full-wave electromagnetic (EM) simulations is substantial. EM analysis remains crucial for circuit...
-
Energy consumption optimization in wastewater treatment plants: Machine learning for monitoring incineration of sewage sludge
PublikacjaBiomass management in terms of energy consumption optimization has become a recent challenge for developed countries. Nevertheless, the multiplicity of materials and operating parameters controlling energy consumption in wastewater treatment plants necessitates the need for sophisticated well-organized disciplines in order to minimize energy consumption and dissipation. Sewage sludge (SS) disposal management is the key stage of...
-
The Design Development of the Sliding Table Saw Towards Improving Its Dynamic Properties
PublikacjaCutting wood with circular saws is a popular machining operation in the woodworking and furniture industries. In the latter sliding table saws (panel saws) are commonly used for cutting of medium density fiberboards (MDF), high density fiberboards (HDF), laminate veneer lumber (LVL), plywood and chipboards of different structures. The most demanded requirements for machine tools are accuracy and precision, which mainly depend on...
-
Ecology In Tribology: Selected Problems of Eliminating Natural Oil-Based Lubricants from Machine Friction Couples
PublikacjaThe elimination of mineral oil-based lubricants from machines has multiple beneficial effects on the natural environment. Firstly – these lubricants are a direct threat to the environment in the event of leaks; secondly – their elimination reduces the demand for crude oil from which they are obtained. In addition, in many cases, e.g. when replacing traditional lubricants with water, friction losses in the bearings can also be reduced...
-
Design. Metodology outline and practice
PublikacjaNa tle - uznawanego za typowy - schematu prac składających się na proces projektowania, pokazano przykładowe tworzenie inicjatywy sprawczej oraz rozwój koncepcji dotyczących sformułowania konkretnego zadania projektowego w dziedzinie budowy maszyn.Temat dotyczył obszaru projektowania turbin wodnych.The origin of project initiative, as well as concept development related to formulating a specific design goal, are presented in the...
-
Chip suction system in circular sawing machine: empirical research and computational fluid dynamics numerical simulations
PublikacjaThe experimental analysis of the wood chip removing system during its redesigning in the existing sliding table circular saw and computational fluid dynamic (CFD) numerical simulations of the air flow process is presented in the paper. The attention was focused on the extraction hood and the bottom shelter of the actual existing system. The main aim was to perform experimental research on the pressure distribution inside the...
-
How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image
PublikacjaThis study presents a human-computer interaction combined with a brain-machine interface (BMI) and obstacle detection system for remote control of a wheeled robot through movement imagery, providing a potential solution for individuals facing challenges with conventional vehicle operation. The primary focus of this work is the classification of surface EEG signals related to mental activity when envisioning movement and deep relaxation...
-
Failure analysis of a high-speed induction machine driven by a SiC-inverter and operating on a common shaft with a high-speed generator
PublikacjaDue to ongoing research work, a prototype test rig for testing high-speed motors/generators has been developed. Its design is quite unique as the two high- speed machines share a single shaft with no support bearings between them. A very high maximum operating speed, up to 80,000 rpm, was required. Because of the need to minimise vibration during operation at very high rotational speeds, rolling bearings were used. To eliminate...
-
Energy Versus Throughput Optimisation for Machine-to-Machine Communication
Publikacja -
Analysis of the design development of the sliding table saw spindles
PublikacjaProducers of sliding table saws constantly strive for improvement in sawing accuracy. One of the method is an upswing in a spindle behavior, since, it affects to a large degree sawing effects. The design development of sliding table saw spindles during the last quarter-century is presented. The spindle system of the modernized spindle of the sawing machine Fx550 is described.
-
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publikacja3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...
-
Machine-to-Machine communication and data processing approach in Future Internet applications
Publikacja -
Network lifetime maximization in wireless mesh networks for machine-to-machine communication
Publikacja -
Lead-free bismuth-based perovskites coupled with g–C3N4: A machine learning based novel approach for visible light induced degradation of pollutants
PublikacjaThe use of metal halide perovskites in photocatalytic processes has been attempted because of their unique optical properties. In this work, for the first time, Pb-free Bi-based perovskites of the Cs3Bi2X9 type (X = Cl, Br, I, Cl/Br, Cl/I, Br/I) were synthesized and subjected to comprehensive morphological, structural, and surface analyses, and photocatalytic properties in the phenol degradation reaction were examined. Furthermore,...