Wyniki wyszukiwania dla: Deep Learning - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: Deep Learning

Filtry

wszystkich: 549
wybranych: 512

wyczyść wszystkie filtry


Filtry wybranego katalogu

  • Kategoria

  • Rok

  • Opcje

wyczyść Filtry wybranego katalogu niedostępne

Wyniki wyszukiwania dla: Deep Learning

  • Generowanie tekstu z użyciem sieci typu Transformer

    Publikacja

    Opisano działanie wybranych modeli uczenia maszynowego znajdujących zastosowanie w przetwarzaniu języka naturalnego w szczególności wy- korzystywanych do generowania tekstu. Przedstawiono również model BERT i jego różne wersje, a także praktyczne wykorzystanie modeli typu Transformer. Przedstawiono ich działanie w aplikacji zmieniającej nastrój tekstu w sposób sekwencyjny.

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Computer-Aided Diagnosis of COVID-19 from Chest X-ray Images Using Hybrid-Features and Random Forest Classifier

    Publikacja

    - Healthcare - Rok 2023

    In recent years, a lot of attention has been paid to using radiology imaging to automatically find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently. (2) Methods: Using chest X-ray images, this study proposed a cutting-edge scheme for the automatic recognition of COVID-19 and pneumonia....

    Pełny tekst do pobrania w portalu

  • Respiratory Rate Estimation Based on Detected Mask Area in Thermal Images

    Publikacja

    The popularity of non-contact methods of measuring vital signs, particularly respiratory rate, has increased during the SARS-COV-2 pandemic. Breathing parameters can be estimated by analysis of temperature changes observed in thermal images of nostrils or mouth regions. However, wearing virus-protection face masks prevents direct detection of such face regions. In this work, we propose to use an automatic mask detection approach...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Bimodal Emotion Recognition Based on Vocal and Facial Features

    Emotion recognition is a crucial aspect of human communication, with applications in fields such as psychology, education, and healthcare. Identifying emotions accurately is challenging, as people use a variety of signals to express and perceive emotions. In this study, we address the problem of multimodal emotion recognition using both audio and video signals, to develop a robust and reliable system that can recognize emotions...

    Pełny tekst do pobrania w portalu

  • Systematic Literature Review on Click Through Rate Prediction

    The ability to anticipate whether a user will click on an item is one of the most crucial aspects of operating an e-commerce business, and clickthrough rate prediction is an attempt to provide an answer to this question. Beginning with the simplest multilayer perceptrons and progressing to the most sophisticated attention networks, researchers employ a variety of methods to solve this issue. In this paper, we present the findings...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • From Scores to Predictions in Multi-Label Classification: Neural Thresholding Strategies

    In this paper, we propose a novel approach for obtaining predictions from per-class scores to improve the accuracy of multi-label classification systems. In a multi-label classification task, the expected output is a set of predicted labels per each testing sample. Typically, these predictions are calculated by implicit or explicit thresholding of per-class real-valued scores: classes with scores exceeding a given threshold value...

    Pełny tekst do pobrania w portalu

  • Neural network training with limited precision and asymmetric exponent

    Publikacja

    Along with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...

    Pełny tekst do pobrania w portalu

  • Adding Intelligence to Cars Using the Neural Knowledge DNA

    Publikacja

    - CYBERNETICS AND SYSTEMS - Rok 2017

    In this paper we propose a Neural Knowledge DNA based framework that is capable of learning from the car’s daily operation. The Neural Knowledge DNA is a novel knowledge representation and reasoning approach designed to support discovering, storing, reusing, improving, and sharing knowledge among machines and computing devices. We examine our framework for drivers' classification based on their driving behaviour. The experimental...

    Pełny tekst do pobrania w portalu

  • Towards neural knowledge DNA

    Publikacja

    In this paper, we propose the Neural Knowledge DNA, a framework that tailors the ideas underlying the success of neural networks to the scope of knowledge representation. Knowledge representation is a fundamental field that dedicates to representing information about the world in a form that computer systems can utilize to solve complex tasks. The proposed Neural Knowledge DNA is designed to support discovering, storing, reusing,...

    Pełny tekst do pobrania w portalu

  • Zastosowanie sieci neuronowych w cyfrowej syntezie dźwięku

    Publikacja

    Rozwój technik związanych z uczeniem maszynowym umożliwia nowe podejście i nowe definiowanie wielu dotychczasowych problemów. Heurystyczne algorytmy stosowane do problemów takich jak klasyfikacja danych w postaci wektorów cech, czy wyróżnianie grup obiektów o podobnych własnościach mogą znaleźć także zastosowanie w takich dziedzinach jak analiza i synteza dźwięków muzycznych. W referacie przybliżone zostały podstawowe zasady projektowania...

  • Toward Intelligent Vehicle Intrusion Detection Using the Neural Knowledge DNA

    Publikacja

    - CYBERNETICS AND SYSTEMS - Rok 2018

    In this paper, we propose a novel intrusion detection approach using past driving experience and the neural knowledge DNA for in-vehicle information system security. The neural knowledge DNA is a novel knowledge representation method designed to support discovering, storing, reusing, improving, and sharing knowledge among machines and computing systems. We examine our approach for classifying malicious vehicle control commands...

    Pełny tekst do pobrania w portalu

  • Architektura a dekonstrukcja. Przypadek Petera Eisenmana i Bernarda Tschumiego

    Publikacja

    - Rok 2015

    Architecture and Deconstruction Case of Peter Eisenman and Bernard Tschumi   Introduction Towards deconstruction in architecture Intensive relations between philosophical deconstruction and architecture, which were present in the late 1980s and early 1990s, belong to the past and therefore may be described from a greater than...

    Pełny tekst do pobrania w portalu