Filtry
wszystkich: 149
wybranych: 142
Wyniki wyszukiwania dla: 2d space feature, speech analysis, deep learning, spectrogram, cepstrogram, chromagram
-
Optimized Deep Learning Model for Flood Detection Using Satellite Images
PublikacjaThe increasing amount of rain produces a number of issues in Kerala, particularly in urban regions where the drainage system is frequently unable to handle a significant amount of water in such a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance the outcomes of conventional flood detection...
-
Convolutional Neural Networks for C. Elegans Muscle Age Classification Using Only Self-Learned Features
PublikacjaNematodes Caenorhabditis elegans (C. elegans) have been used as model organisms in a wide variety of biological studies, especially those intended to obtain a better understanding of aging and age-associated diseases. This paper focuses on automating the analysis of C. elegans imagery to classify the muscle age of nematodes based on the known and well established IICBU dataset. Unlike many modern classification methods, the proposed...
-
Analyzing the relationship between sound, color, and emotion based on subjective and machine-learning approaches
PublikacjaThe aim of the research is to analyze the relationship between sound, color, and emotion. For this purpose, a survey application was prepared, enabling the assignment of a color to a given speaker’s/singer’s voice recordings. Subjective tests were then conducted, enabling the respondents to assign colors to voice/singing samples. In addition, a database of voice/singing recordings of people speaking in a natural way and with expressed...
-
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
PublikacjaAutomation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature...
-
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
PublikacjaAutomation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature...
-
Fusion-based Representation Learning Model for Multimode User-generated Social Network Content
PublikacjaAs mobile networks and APPs are developed, user-generated content (UGC), which includes multi-source heterogeneous data like user reviews, tags, scores, images, and videos, has become an essential basis for improving the quality of personalized services. Due to the multi-source heterogeneous nature of the data, big data fusion offers both promise and drawbacks. With the rise of mobile networks and applications, UGC, which includes...
-
Graph Representation Integrating Signals for Emotion Recognition and Analysis
PublikacjaData reusability is an important feature of current research, just in every field of science. Modern research in Affective Computing, often rely on datasets containing experiments-originated data such as biosignals, video clips, or images. Moreover, conducting experiments with a vast number of participants to build datasets for Affective Computing research is time-consuming and expensive. Therefore, it is extremely important to...
-
Multimedia industrial and medical applications supported by machine learning
PublikacjaThis article outlines a keynote paper presented at the Intelligent DecisionTechnologies conference providing a part of the KES Multi-theme Conference “Smart Digital Futures” organized in Rome on June 14–16, 2023. It briefly discusses projects related to traffic control using developed intelligent traffic signs and diagnosing the health of wind turbine mechanisms and multimodal biometric authentication for banking branches to provide...
-
Music information retrieval—The impact of technology, crowdsourcing, big data, and the cloud in art.
PublikacjaThe exponential growth of computer processing power, cloud data storage, and crowdsourcing model of gathering data bring new possibilities to music information retrieval (mir) field. Mir is no longer music content retrieval only; the area also comprises the discovery of expressing feelings and emotions contained in music, incorporating other than hearing modalities for helping this issue, users’ profiling, merging music with social...
-
Pursuing the Deep-Learning-Based Classification of Exposed and Imagined Colors from EEG
PublikacjaEEG-based brain-computer interfaces are systems aiming to integrate disabled people into their environments. Nevertheless, their control could not be intuitive or depend on an active external stimulator to generate the responses for interacting with it. Targeting the second issue, a novel paradigm is explored in this paper, which depends on a passive stimulus by measuring the EEG responses of a subject to the primary colors (red,...
-
OOA-modified Bi-LSTM network: An effective intrusion detection framework for IoT systems
PublikacjaCurrently, the Internet of Things (IoT) generates a huge amount of traffic data in communication and information technology. The diversification and integration of IoT applications and terminals make IoT vulnerable to intrusion attacks. Therefore, it is necessary to develop an efficient Intrusion Detection System (IDS) that guarantees the reliability, integrity, and security of IoT systems. The detection of intrusion is considered...
-
Attention-Based Deep Learning System for Classification of Breast Lesions—Multimodal, Weakly Supervised Approach
PublikacjaBreast cancer is the most frequent female cancer, with a considerable disease burden and high mortality. Early diagnosis with screening mammography might be facilitated by automated systems supported by deep learning artificial intelligence. We propose a model based on a weakly supervised Clustering-constrained Attention Multiple Instance Learning (CLAM) classifier able to train under data scarcity effectively. We used a private...
-
Feature Weighted Attention-Bidirectional Long Short Term Memory Model for Change Detection in Remote Sensing Images
PublikacjaIn remote sensing images, change detection (CD) is required in many applications, such as: resource management, urban expansion research, land management, and disaster assessment. Various deep learning-based methods were applied to satellite image analysis for change detection, yet many of them have limitations, including the overfitting problem. This research proposes the Feature Weighted Attention (FWA) in Bidirectional Long...
-
Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia
PublikacjaW pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...
-
Pedestrian detection in low-resolution thermal images
PublikacjaOver one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...
-
Ultrawideband transmission in physical channels: a broadband interference view
PublikacjaThe superposition of multipath components (MPC) of an emitted wave, formed by reflections from limiting surfaces and obstacles in the propagation area, strongly affects communication signals. In the case of modern wideband systems, the effect should be seen as a broadband counterpart of classical interference which is the cause of fading in narrowband systems. This paper shows that in wideband communications, the time- and frequency-domain...
-
Predicting emotion from color present in images and video excerpts by machine learning
PublikacjaThis work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...
-
Active Site Architecture and Reaction Mechanism Determination of Cold Adapted beta-D-galactosidase from Arthrobacter sp. 32cB
PublikacjaArthbetaDG is a dimeric, cold-adapted beta-D-galactosidase that exhibits high hydrolytic and transglycosylation activity. A series of crystal structures of its wild form, as well as its ArthbetaDG_E441Q mutein complexes with ligands were obtained in order to describe the mode of its action. The ArthbetaDG_E441Q mutein is an inactive form of the enzyme designed to enable observation of enzyme interaction with its substrate. The...
-
Threats to Rural Landscape and Its Protection in Poland
PublikacjaThe article describes the premises and conditions for the implementation of a pro-landscape spatial policy in rural areas in Poland. It presents the erosion of spatial order in a large part of the country’s territory. Firstly, the state of protection of the rural landscape and the legal aspects of shaping the space of rural areas are described. Secondly, the location is depicted, and the main physiognomic and environmental threats...
-
Motion Trajectory Prediction in Warehouse Management Systems: A Systematic Literature Review
PublikacjaBackground: In the context of Warehouse Management Systems, knowledge related to motion trajectory prediction methods utilizing machine learning techniques seems to be scattered and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature review approach. Methods: Based on the data collected from Google Scholar, a systematic literature review was performed, covering the period from 2016...
-
Visual method for detecting critical damage in railway contact strips
PublikacjaEnsuring an uninterrupted supply of power in the electric traction is vital for the safety of this important transport system. For this purpose, monitoring and diagnostics of the technical condition of the vehicle's power supply elements are becoming increasingly common. This paper presents a new visual method for detecting contact strip damage, based on measurement and analysis of the movement of the overhead contact line (OCL)...
-
ARIMA vs LSTM on NASDAQ stock exchange data
PublikacjaThis study compares the results of two completely different models: statistical one (ARIMA) and deep learning one (LSTM) based on a chosen set of NASDAQ data. Both models are used to predict daily or monthly average prices of chosen companies listed on the NASDAQ stock exchange. Research shows which model performs better in terms of the chosen input data, parameters and number of features. The chosen models were compared using...
-
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
PublikacjaThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...
-
Mobilenet-V2 Enhanced Parkinson's Disease Prediction with Hybrid Data Integration
PublikacjaThis study investigates the role of deep learning models, particularly MobileNet-v2, in Parkinson's Disease (PD) detection through handwriting spiral analysis. Handwriting difficulties often signal early signs of PD, necessitating early detection tools due to potential impacts on patients' work capacities. The study utilizes a three-fold approach, including data augmentation, algorithm development for simulated PD image datasets,...
-
A quasi-2D small-signal MOSFET model - main results
PublikacjaDynamic properties of the MOS transistor under small-signal excitation are determined by kinetic parameters of the carriers injected into the channel, i.e., the low-field mobility, velocity saturation, mobility at the quiescent-point (Q-point), longitudinal electric field in the channel, by dynamic properties of the channel, as well as by an electrical coupling between the perturbed carrier concentration in the channel and the...
-
Machine-Learning-Based Global Optimization of Microwave Passives with Variable-Fidelity EM Models and Response Features
PublikacjaMaximizing microwave passive component performance demands precise parameter tuning, particularly as modern circuits grow increasingly intricate. Yet, achieving this often requires a comprehensive approach due to their complex geometries and miniaturized structures. However, the computational burden of optimizing these components via full-wave electromagnetic (EM) simulations is substantial. EM analysis remains crucial for circuit...
-
Akustyczna analiza parametrów ruchu drogowego z wykorzystaniem informacji o hałasie oraz uczenia maszynowego
PublikacjaCelem rozprawy było opracowanie akustycznej metody analizy parametrów ruchu drogowego. Zasada działania akustycznej analizy ruchu drogowego zapewnia pasywną metodę monitorowania natężenia ruchu. W pracy przedstawiono wybrane metody uczenia maszynowego w kontekście analizy dźwięku (ang.Machine Hearing). Przedstawiono metodologię klasyfikacji zdarzeń w ruchu drogowym z wykorzystaniem uczenia maszynowego. Przybliżono podstawowe...
-
Separability Assessment of Selected Types of Vehicle-Associated Noise
PublikacjaMusic Information Retrieval (MIR) area as well as development of speech and environmental information recognition techniques brought various tools in-tended for recognizing low-level features of acoustic signals based on a set of calculated parameters. In this study, the MIRtoolbox MATLAB tool, designed for music parameter extraction, is used to obtain a vector of parameters to check whether they are suitable for separation of...
-
Neural network model of ship magnetic signature for different measurement depths
PublikacjaThis paper presents the development of a model of a corvette-type ship’s magnetic signature using an artificial neural network (ANN). The capabilities of ANNs to learn complex relationships between the vessel’s characteristics and the magnetic field at different depths are proposed as an alternative to a multi-dipole model. A training dataset, consisting of signatures prepared in finite element method (FEM) environment Simulia...
-
Sensors and Sensor’s Fusion in Autonomous Vehicles
PublikacjaAutonomous vehicle navigation has been at the center of several major developments, both in civilian and defense applications. New technologies such as multisensory data fusion, big data processing, and deep learning are changing the quality of areas of applications, improving the sensors and systems used. New ideas such as 3D radar, 3D sonar, LiDAR, and others are based on autonomous vehicle revolutionary development. The Special...
-
Method for Clustering of Brain Activity Data Derived from EEG Signals
PublikacjaA method for assessing separability of EEG signals associated with three classes of brain activity is proposed. The EEG signals are acquired from 23 subjects, gathered from a headset consisting of 14 electrodes. Data are processed by applying Discrete Wavelet Transform (DWT) for the signal analysis and an autoencoder neural network for the brain activity separation. Processing involves 74 wavelets from 3 DWT families: Coiflets,...
-
An Automated Method for Biometric Handwritten Signature Authentication Employing Neural Networks
PublikacjaHandwriting biometrics applications in e-Security and e-Health are addressed in the course of the conducted research. An automated graphomotor analysis method for the dynamic electronic representation of the handwritten signature authentication was researched. The developed algorithms are based on dynamic analysis of electronically handwritten signatures employing neural networks. The signatures were acquired with the use of the...
-
An automated learning model for twitter sentiment analysis using Ranger AdaBelief optimizer based Bidirectional Long Short Term Memory
PublikacjaSentiment analysis is an automated approach which is utilized in process of analysing textual data to describe public opinion. The sentiment analysis has major role in creating impact in the day-to-day life of individuals. However, a precise interpretation of text still relies as a major concern in classifying sentiment. So, this research introduced Bidirectional Long Short Term Memory with Ranger AdaBelief Optimizer (Bi-LSTM RAO)...
-
A new multi-process collaborative architecture for time series classification
PublikacjaTime series classification (TSC) is the problem of categorizing time series data by using machine learning techniques. Its applications vary from cybersecurity and health care to remote sensing and human activity recognition. In this paper, we propose a novel multi-process collaborative architecture for TSC. The propositioned method amalgamates multi-head convolutional neural networks and capsule mechanism. In addition to the discovery...
-
Comparative molecular modelling of biologically active sterols
PublikacjaMembrane sterols are targets for a clinically important antifungal agent – amphotericin B. The relatively specific antifungal action of the drug is based on a stronger interaction of amphotericin B with fungal ergosterol than with mammalian cholesterol. Conformational space occupied by six sterols has been defined using the molecular dynamics method to establish if the conformational features correspond to the preferential interaction...
-
Considerations of Computational Efficiency in Volunteer and Cluster Computing
PublikacjaIn the paper we focus on analysis of performance and power consumption statistics for two modern environments used for computing – volunteer and cluster based systems. The former integrate computational power donated by volunteers from their own locations, often towards social oriented or targeted initiatives, be it of medical, mathematical or space nature. The latter is meant for high performance computing and is typically installed...
-
Bimodal deep learning model for subjectively enhanced emotion classification in films
PublikacjaThis research delves into the concept of color grading in film, focusing on how color influences the emotional response of the audience. The study commenced by recalling state-of-the-art works that process audio-video signals and associated emotions by machine learning. Then, assumptions of subjective tests for refining and validating an emotion model for assigning specific emotional labels to selected film excerpts were presented....
-
A new concept of PWM duty cycle computation using the Barycentric Coordinates in a Three-Dimensional voltage vectors arrangement
PublikacjaThe paper presents a novel approach to the Pulse Width Modulation (PWM) duty cycle computing for complex or irregular voltage vector arrangements in the two (2D) and three–dimensional (3D) Cartesian coordinate systems. The given vectors arrangement can be built using at least three vectors or collections with variable number of involved vectors (i.e. virtual vectors). Graphically, these vectors form a convex figure, in particular,...
-
Distinctive facades of commercial buildings and the quality of public space,
PublikacjaMutual relations between the retail center and public spaces of the city are varied. They depend on the type and size of the commercial structure. Other ones are for multifunctional shopping centers and other for high streets. In megastores and shopping malls the essential for their functioning is their interior and entrance, which is sometimes the only place of interpenetration of the commercial structure with the surrounding...
-
Improving platelet‐RNA‐based diagnostics: a comparative analysis of machine learning models for cancer detection and multiclass classification
PublikacjaLiquid biopsy demonstrates excellent potential in patient management by providing a minimally invasive and cost-effective approach to detecting and monitoring cancer, even at its early stages. Due to the complexity of liquid biopsy data, machine-learning techniques are increasingly gaining attention in sample analysis, especially for multidimensional data such as RNA expression profiles. Yet, there is no agreement in the community...
-
Machine learning for the management of biochar yield and properties of biomass sources for sustainable energy
PublikacjaBiochar is emerging as a potential solution for biomass conversion to meet the ever increasing demand for sustainable energy. Efficient management systems are needed in order to exploit fully the potential of biochar. Modern machine learning (ML) techniques, and in particular ensemble approaches and explainable AI methods, are valuable for forecasting the properties and efficiency of biochar properly. Machine-learning-based forecasts,...
-
Visual Content Learning in a Cognitive Vision Platform for Hazard Control (CVP-HC)
PublikacjaThis work is part of an effort for the development of a Cognitive Vision Platform for Hazard Control (CVP-HC) for applications in industrial workplaces, adaptable to a wide range of environments. The paper focuses on hazards resulted from the nonuse of personal protective equipment (PPE). Given the results of previous analysis of supervised techniques for the problem of classification of a few PPE (boots, hard hats, and gloves...
-
IFE: NN-aided Instantaneous Pitch Estimation
PublikacjaPitch estimation is still an open issue in contemporary signal processing research. Nowadays, growing momentum of machine learning techniques application in the data-driven society allows for tackling this problem from a new perspective. This work leverages such an opportunity to propose a refined Instantaneous Frequency and power based pitch Estimator method called IFE. It incorporates deep neural network based pitch estimation...
-
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublikacjaThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...
-
Enabling Deeper Linguistic-based Text Analytics – Construct Development for the Criticality of Negative Service Experience
PublikacjaSignificant progress has been made in linguistic-based text analytics particularly with the increasing availability of data and deep learning computational models for more accurate opinion analysis and domain-specific entity recognition. In understanding customer service experience from texts, analysis of sentiments associated with different stages of the service lifecycle is a useful starting point. However, when richer insights...
-
A Mammography Data Management Application for Federated Learning
PublikacjaThis study aimed to develop and assess an application designed to enhance the management of a local client database consisting of mammographic images with a focus on ensuring that images are suitably and uniformly prepared for federated learning applications. The application supports a comprehensive approach, starting with a versatile image-loading function that supports DICOM files from various medical imaging devices and settings....
-
Improving Accuracy of Contactless Respiratory Rate Estimation by Enhancing Thermal Sequences with Deep Neural Networks
PublikacjaEstimation of vital signs using image processing techniques have already been proved to have a potential for supporting remote medical diagnostics and replacing traditional measurements that usually require special hardware and electrodes placed on a body. In this paper, we further extend studies on contactless Respiratory Rate (RR) estimation from extremely low resolution thermal imagery by enhancing acquired sequences using Deep...
-
High-quality academic teachers in business school. The case of The University of Gdańsk, Poland
PublikacjaThe Bologna process, the increasing number of higher education institutions, the mass education and the demographic problems make the quality of education and quality of the academic teachers a subject of wide public debate and concern. The aim of the paper is to identify the most preferred characteristics of a teacher working at a business school. The research problem was: What should a high-quality business school academic teacher...
-
Multimodal human-computer interfaces based on advanced video and audio analysis
PublikacjaMultimodal interfaces development history is reviewed briefly in the introduction. Examples of applications of multimodal interfaces to education software and for the disabled people are presented, including interactive electronic whiteboard based on video image analysis, application for controlling computers with mouth gestures and the audio interface for speech stretching for hearing impaired and stuttering people. The Smart...
-
An application of blended and collaborative learning in spatial planning course
PublikacjaSpatial Planning is a master course for graduate students of Environmental Engineering. The course is based on assumptions that students’ future work will be connected with spatial planning, and spatial issues will have an influence on their everyday lives. To familiarize students with environmental issues in planning, the teams of students get an assignment to design an urban space, waterfront along a stream. The whole project...