Filtry
wszystkich: 192
wybranych: 155
Wyniki wyszukiwania dla: IMPLANTS,
-
Effect of Laser Treatment on Intrinsic Mechanical Stresses in Titanium and Some of Its Alloys
PublikacjaLaser surface treatment conducted at different power levels is an option to modify titanium bone implants to produce nano- and microtopography. However, such processing can lead to excess mechanical stress within the surface layer. This research aims to calculate the level of such residual stresses after the surface processing of Ti grade IV, Ti15Mo, and Ti6Al7Nb alloys with an Nd:YAG laser. Light and scanning electron microscopies...
-
Electrophoretic Deposition and Characteristics of Chitosan–Nanosilver Composite Coatings on a Nanotubular TiO2 Layer
PublikacjaThe surface treatment of titanium implants has been applied mainly to increase surface bioactivity and, more recently, to introduce antibacterial properties. To this end, composite coatings have been investigated, particularly those based on hydroxyapatite. The present research was aimed at the development of another coating type, chitosan–nanosilver, deposited on a Ti13Zr13Nb alloy. The research comprised characterization of the...
-
The Chemical and Biological Properties of Nanohydroxyapatite Coatings with Antibacterial Nanometals, Obtained in the Electrophoretic Process on the Ti13Zr13Nb Alloy
PublikacjaThe risk of an early inflammation after implantation surgery of titanium implants has caused the development of different antimicrobial measures. The present research is aimed at characterizing the effects of nanosilver and nanocopper dispersed in the nanohydroxyapatite coatings, deposited on the Ti13Zr13Nb alloy, and on the chemical and biological properties of the coatings.The one-stage deposition process was performed by the...
-
Influence of silver nanoparticles addition on antibacterial properties of PEO coatings formed on magnesium
PublikacjaMagnesium is a biodegradable material and thus could be a choice for bone fixation devices and implants with a specific purpose. This study aims to enhance the anti-corrosive, biocompatible, and antibacterial properties on magnesium-based materials through ceramic coatings formation. To achieve this the silicate-based electrolyte was used to create of Plasma Electrolytic Oxidation (PEO) coatings. During investigation the bioactive...
-
Materials Design for the Titanium Scaffold Based Implant
PublikacjaThe main objective of here presented research is a design the scaffold/porous titanium(Ti) alloy based composite material demonstrating better biocompatibility, longer lifetime andbioactivity behaviour for load-bearing implants. The development of such material is proposed bymaking a number of consecutive tasks. Modelling the mechanical, biomechanical and biologicalbehavior of porous titanium structure and an elaboration of results...
-
Materials Design for the Titanium Scaffold Based Implant
PublikacjaThe main objective of here presented research is a design the scaffold/porous titanium(Ti) alloy based composite material demonstrating better biocompatibility, longer lifetime andbioactivity behaviour for load-bearing implants. The development of such material is proposed bymaking a number of consecutive tasks. Modelling the mechanical, biomechanical and biologicalbehavior of porous titanium structure and an elaboration of results...
-
Sensitivity analysis based on non-intrusive regression-based polynomial chaos expansion for surgical mesh modelling
PublikacjaThe modelling of a system containing implants used in ventral hernia repair and human tissue suffers from many uncertainties. Thus, a probabilistic approach is needed. The goal of this study is to define an efficient numerical method to solve non-linear biomechanical models supporting the surgeon in decisions about ventral hernia repair. The model parameters are subject to substantial variability owing to, e.g., abdominal wall...
-
DNA-reactive anticancer imidazoacridinone C-1311 is a new inhibitor of hypoxia-inducible factor 1 alpha, vascular endothelial growth factor and tumor angiogenesis
PublikacjaHypoxia-inducible factor 1 (HIF-1) plays a critical role for tumor adaptation to hypoxia and promotes angiogenesis. Antitumor imidazoacridinone C-1311 is a DNA reactive topoisomerase II and FLT3 receptor tyrosine kinase inhibitor selected for phase II clinical trials for breast cancer. Here, we demonstrate the new mechanism of C-1311 action involving HIF-1a, vascular endothelial growth factor (VEGF) and angiogenesis as additional...
-
In Vitro Biological Characterization of Silver-Doped Anodic Oxide Coating on Titanium
PublikacjaDespite the high biocompatibility and clinical effectiveness of Ti-based implants, surface functionalization (with complex osteointegrative/antibacterial strategies) is still required. To enhance the dental implant surface and to provide additional osteoinductive and antibacterial properties, plasma electrolytic oxidation of a pure Ti was performed using a nitrilotriacetic acid (NTA)-based Ag nanoparticles (AgNP)-loaded calcium–phosphate...
-
Properties of Nanohydroxyapatite Coatings Doped with Nanocopper, Obtained by Electrophoretic Deposition on Ti13Zr13Nb Alloy
PublikacjaNowadays, hydroxyapatite coatings are the most common surface modification of long-term implants. These coatings are characterized by high thickness and poor adhesion to the metallic substrate. The present research is aimed at characterizing the properties of nanohydroxyapatite (nanoHAp) with the addition of copper nanoparticle (nanoCu) coatings deposited on the Ti13Zr13Nb alloy by an electrophoresis process. The deposition of...
-
Technologia biomems - przegląd zastosowań
PublikacjaThe paper reviews the issues related to technology, MEMS (Micro-Electro Systems-Mechanical) in the context of applications in biotechnology and biomedical systems. Systems of this type, with applications in biology and medicine, have the name of our common BioMEMS systems. This pertains to a wide range of technology BioMEMS. The aim of this study is to determine future medical MEMS microphones with particular emphasis on their...
-
Assessment of the usefulness of bacterial cellulose produced by Gluconacetobacter xylinus E25 as a new biological implant
PublikacjaBionanocellulose (BNC) is a clear polymer produced by the bacterium Gluconacetobacter xylinus. In our current study, “Research on the use of bacterial nanocellulose (BNC) in regenerative medicine as a function of the biological implants in cardiac and vascular surgery”, we carried out material analysis, biochemical analysis, in vitro tests and in vivo animal model testing. In stage 1 of the project, we carried out physical and...
-
Self-organising maps in the analysis of strains of human abdominal wall to identify areas of similar mechanical behaviour.
PublikacjaThe study refers to the application of a type of artificial neural network called the Self-Organising Map (SOM) for the identification of areas of the human abdominal wall that behave in a similar mechanical way. The research is based on data acquired during in vivo tests using the digital image correlation technique (DIC). The mechanical behaviour of the human abdominal wall is analysed during changing intra-abdominal pressure....
-
On implementation of fibrous connective tissues’ damage in Abaqus software
PublikacjaConnective fibrous tissues, such as tendons and ligaments, in humans and animals exhibit hyperelastic behaviour. The constitution of the material of these tissues is anisotropic due to the presence of the collagen fibres, where one family of fibres is the typical case. Traumatic events and/or aging may sometimes lead to the damage of the tissue. The study of motion of affected joints or limbs is usually not permitted in vivo. This...
-
In vivo performance of intraperitoneal onlay mesh after ventral hernia repair
PublikacjaBackground: Ventral hernia repair needs to be improved since recurrence, postoperative pain and other complications are still reported in many patients. The behavior of implants in vivo is not sufficiently understood to design a surgical mesh mechanically compatible with the human abdominal wall. Methods: This analysis was based on radiological pictures of patients who underwent laparoscopic ventral hernia repair. The pictures...
-
Polyurethanes modified with natural polymers for medical application. I. Polyurethanes/ Chitosan and polyurethane/collagen.
PublikacjaFor over three decades polyurethanes (PUR or PU) have been reported for application in a variety of medical devices. These polymers consist of hard and soft segments, which allow for more subtle control of their structure and properties. By varying the composition of the different segments, properties of PURcan be tuned up for use in many areas of medicine. Recently there is a great interest in modification of biomedical PUR with...
-
Powder metallurgy of the porous Ti-13Nb-13Zr alloy of different powder grain size
PublikacjaThe objective of the present project was to determine the effects of powder granulation (fraction of grain size) for the Ti-13Nb-13Zr alloy, produced by powder metallurgy, on its porosity, grain cohesion, compressive strength, and Young`s modulus. Two powder fractions, 45–105 µm, and 106–250 µm were applied. The 50 mass pct of NH4HCO3 was added as a space holder. The specimens were in compaction stage uniaxially pressed at pressure...
-
The Morphology, Structure, Mechanical Properties and Biocompatibility of Nanotubular Titania Coatings before and after Autoclaving Process
PublikacjaThe autoclaving process is one of the sterilization procedures of implantable devices. Therefore, it is important to assess the impact of hot steam at high pressure on the morphology, structure, and properties of implants modified by nanocomposite coatings. In our works, we focused on studies on amorphous titania nanotubes produced by titanium alloy (Ti6Al4V) electrochemical oxidation in the potential range 5–60 V. Half of the...
-
Mechanical Properties and Wear Susceptibility Determined by Nanoindentation Technique of Ti13Nb13Zr Titanium Alloy after “Direct Laser Writing”
PublikacjaLaser treatment has often been applied to rebuild the surface layer of titanium and its alloys destined for long-term implants. Such treatment has always been associated with forming melted and re-solidified thin surface layers. The process parameters of such laser treatment can be different, including the patterning of a surface by so-called direct writing. In this research, pulse laser treatment was performed on the Ti13Nb13Zr...
-
Methods for biomaterials printing: A short review and perspective
PublikacjaPrinting technologies have opened larger windows of innovation and creativity to biomaterials engineers by providing them with the ability to fabricate complex shapes in a reasonable time, cost, and weight. However, there has always been a trouble with function adjusting in printing technologies in view of the multiplicity of materials and apparatus parameters. 3D printing, also known as additive manufacturing, revolutionized biomaterials...
-
Research of chitosan coatings deposited by electrophoretic deposition method at various voltage and time parameters
PublikacjaThe aim of this research is to estimate the electrophoretic deposition main parameters, such as voltage and time duration, that will provide optimal characteristics of the surface layer. Chitosan coatings were synthesized on biomedical Ti13Zr13Nb alloys at 20 V and 30 V and with deposit times of 2min, 5 min, 10 min, and 15 min. Evaluation of the coating was performed by using Scanning Electron Microscope (SEM), Energy-Dispersive...
-
Polynomial Chaos Expansion in Bio-and Structural Mechanics
PublikacjaThis monograph presents a probabilistic approach to modelling the mechanics of materials and structures where the modelled performance is influenced by uncertainty in the input parameters. The work is interdisciplinary and the methods described are applied to medical and civil engineering problems. The motivation for this work was the necessity of mechanics-based approaches in the modelling and simulation of implants used in the...
-
Biological and mechanical properties of bone cement with nanoparticles - in vivo and in vitro research
PublikacjaDespite antibiotics preventive treatment, before and after an implant implementation, risk of infection are real. These infections at the implant surface develop in a few months after applying them into the body. To prevent the development of bacteria and to reduce the risk of infection, implants coated with nanoparticles come into use. The Mechanical Department of the Technical University of Gdańsk carried out a research with...
-
Polynomial Chaos Expansion in Bio- and Structural Mechanics
PublikacjaThis thesis presents a probabilistic approach to modelling the mechanics of materials and structures where the modelled performance is influenced by uncertainty in the input parameters. The work is interdisciplinary and the methods described are applied to medical and civil engineering problems. The motivation for this work was the necessity of mechanics-based approaches in the modelling and simulation of implants used in the repair...
-
Electrophoretic deposition (EPD) of nanohydroxyapatite - nanosilver coatings on Ti13Zr13Nb alloy
PublikacjaTitanium and its alloys are the biomaterials most frequently used in medical engineering, especially as parts of orthopedic and dental implants. The surfaces of titanium and its alloys are usually modified to improve their biocompatibility and bioactivity, for example, in connection with the deposition of hydroxyapatite coatings. The objective of the present research was to elaborate the technology of electrophoretic deposition...
-
Fully Tunable Analog Biquadratic Filter for Low-Power Auditory Signal Processing in CMOS Technologies
PublikacjaA novel Gm-C structure of a second-order continuous-time filter is proposed that allows for the independent control of the filter’s natural frequency (ω0) and quality factor (Q). The structure consists of two capacitors and four transconductors. Two transconductors together with the capacitors form a lossless second-order circuit with tunable ω0. The other two transconductors form a variable gain amplifier (VGA) which realizes...
-
Vascular stents - materials and manufacturing technologies
PublikacjaThe objective of this article is to present materials and technology for the manufacture of vascular stents with appropriate design requirements. The use of the right material is very important in implantology. A biomaterial introduced into the circulatory system must be biocompatible and hemocompatible. At the same time, it should not initiate toxic, mutagenic, or immunological reactions. Currently, 316L stainless steel (316L...
-
PARAMETERS OF THE ELECTROPHORETIC DEPOSITION PROCESS AND ITS INFLUENCE ON THE MORPHOLOGY OF HYDROXYAPATITE COATINGS. REVIEW
PublikacjaMetallic materials intended for bone implants should exhibit not only appropriate mechanical properties, but also high biocompatibility. The surface treatment modifications, for example acidic treatment, laser treatment, ion implantation and deposition of highly biocompatible coatings, are practiced. One of the most popular methods of surface modification is to deposit hydroxyapatite (HAp) coatings. HAp naturally occurs in human...
-
Electrophoretic Deposition and Characterization of Chitosan/Eudragit E 100 Coatings on Titanium Substrate
PublikacjaCurrently, a significant problem is the production of coatings for titanium implants, which will be characterized by mechanical properties comparable to those of a human bone, high corrosion resistance, and low degradation rate in the body fluids. This paper aims to describe the properties of novel chitosan/Eudragit E 100 (chit/EE100) coatings deposited on titanium grade 2 substrate by the electrophoretic technique (EPD). The deposition...
-
Biological and mechanical properties of bone cement with nanoarticles - in vitro and in vivo research
PublikacjaDespite antibiotic preventive treatment both before and after implant implementation, the risks of infection are real. These infections develop at the implant surface a few months after inserting them into the body. To prevent the development of bacteria and reduce the risk of infection, implants coated with nanoparticles are used. The Mechanical Department of the Technical University of Gdansk carries out research into using bone...
-
Experimental study on the effect of selected sterilization methods on mechanical properties of polylactide FFF specimens
PublikacjaPurpose: Biodegradable polymers are widely used in personalized medical devices or scaffolds for tissue engineering. The manufacturing process should be finished with sterilization procedure. However, it is not clear how the different sterilization methods have an impact on the mechanical strength of the three-dimensional (3D)-printed parts, such as bone models or personalized mechanical devices. This paper aims to present the...
-
The early failure of the gamma nail and the dynamic hip screw in femurs with a wide medullary canal. A biomechanical study of intertrochanteric fractures
PublikacjaBackground: Intertrochanteric fractures may occur in a bone with a wide medullary canal that may lead to significant mobility of a intramedullary nail, contrary to an extramedullary device. This study evaluates the Dynamic Hip Screw and the gamma nail in AO 31.A2.1 fractures in these circumstances. Methods: Synthetic femora with canals drilled to 18 mm were used. Five fixation types were examined: a 2 - hole and a 4 – hole Dynamic...
-
Mechanical behaviour of knit synthetic mesh used in hernia surgery
PublikacjaPurpose: There is a discussion in literature concerning mechanical properties and modelling of surgical meshes. An important feature of elastic modulus dependency on load history is taken into account in this paper, as implants are subjected to variable loading during human activity. The example of DynaMesh®-IPOM surgical implant is studied. Methods: The analysis is based on failure tension tests and cyclic loading and unloading...
-
Green engineered biomaterials for bone repair and regeneration: Printing technologies and fracture analysis
PublikacjaDespite the exceptional self-regeneration properties of bone, severe injuries often require additional surgical intervention such as using artificial bone constructs. These structures need to meet a number of criteria regarding their structure, performance, alongside the rate and the mechanism of erosion and fracture when implanted, for stimulating the regeneration of defected bone and, more critically providing support in the...
-
Preparation and properties of composite coatings, based on carbon nanotubes, for medical applications
PublikacjaThe coatings based on carbon nanotubes (CNTs) are increasingly developed for their applications, among others, in medicine, in particular for implants in implantology, cardiology, and neurology. The present review paper aims at a detailed demonstration of diferent preparation methods for such coatings, their performance, and relationships between deposition parameters and microstructure and material, mechanical, physical, chemical,...
-
Is mesh fixation necessary in laparoendoscopic techniques for M3 inguinal defects? An experimental study.
Publikacjarepairs, in case of large direct hernias (M3) mesh fixation is recommended to reduce recurrence risk. Despite lack of highquality evidence, the recommendation was upgraded to strong by expert panel. The authors conducted a research experiment to verify the hypothesis that it is possible to preserve the mesh in the operating field in large direct hernias (M3) without the need to use fixing materials. Method The authors conducted...
-
Assessment of Surface Water Resources Based on Different Growth Scenarios, for Borkena River Sub-basin, Awash River Basin, Ethiopia
PublikacjaThe total annual river flow at the Awash Kombolcha sub-basin of the Borkena river station was estimated to be 4.6 billion cubic meters by 2019-2030. The current average annual flow at the exit measurement station is 544.5Mm3 of the water resources available in the study area. The monthly peak flow of the Borkena River occurs from July to September. In addition, the highest monthly average flow is in August and the lowest is...
-
Structural investigations of niobium-doped bioactive calcium-phosphate glass-ceramics by means of spectroscopic studies
PublikacjaSynthetic calcium-phosphate based glasses and glass-ceramics play a crucial role in the development of tissue engineering. These materials have a high biocompatibility with biological analogues, excellent ability to undergo varying degrees of resorbability and due to their non-toxicity and relatively high bioactivity they are commonly used as bone and dental implants. A substantial research effort is devoted to improve synthetic...
-
Nano-particle doped hydroxyapatite material evaluation using Spectroscopic Polarization Sensitive Optical Coherence Tomography
PublikacjaBio-ceramics such as hydroxyapatite (HAp) are widely used materials in medical applications, especially as an interface between implants and living tissues. There are many ways of creating structures from HAp like electrochemical assisted deposition, biomimetic, electrophoresis, pulsed laser deposition or sol-gel processing. Our research is based on analyzing the parameters of the sol-gel method for creating thin layers of HAp....
-
Deposition of phosphate coatings on titanium within scaffold structure
PublikacjaPurpose: Existing knowledge about the appearance, thickness, and chemical composition of phosphate coatings on titanium inside porous structures is insufficient. Such knowledge is important for the design and fabrication of porous implants. Methods: Metallic scaffolds were fabricated by selective laser melting of 316L stainless steel powder. Phosphate coatings were deposited on Ti sensors placed either outside the scaffolds or...
-
Effect of pulse laser treatment at different process variables on mechanical behavior of carbon nanotubes electrophoretically deposited on titanium alloy
PublikacjaPurpose: Titanium and its alloys are widely used as biomaterials for long-term implants, but they are usually surface-modified due to their weak bioactivity and wear resistance. Laser processing was used to modify the surface layer, and elemental carbon was a component of the deposited coatings. This research aims to use a combination of both methods based on preliminary electrophoretic deposition of multi-wall carbon nanotubes...
-
Biomechanical causes for failure of the Physiomesh/Securestrap system
PublikacjaThis study investigates the mechanical behavior of the Physiomesh/Securestrap system, a hernia repair system used for IPOM procedures associated with high failure rates. The study involved conducting mechanical experiments and numerical simulations to investigate the mechanical behavior of the Physiomesh/Securestrap system under pressure load. Uniaxial tension tests were conducted to determine the elasticity modulus of the Physiomesh...
-
Tensile and Fatigue Behavior of Additive Manufactured Polylactide
PublikacjaThis article presents the results of monotonic tensile and fatigue tests conducted on commercial polylactide or polylactic acid (PLA). The results of fatigue tests for this material present in the literature are limited, especially for additive manufactured elements. The specimens were manufactured using the injection molding and the fused filament fabrication (FFF) method. The FFF specimens were divided into five subgroups, depending...
-
Mechanical and Corrosion Properties of Laser Surface-Treated Ti13Nb13Zr Alloy with MWCNTs Coatings
Publikacja: Titanium and its alloys is the main group of materials used in prosthetics and implantology. Despite their popularity and many advantages associated with their biocompatibility, these materials have a few significant disadvantages. These include low biologic activity—which reduces the growth of fibrous tissue and allows loosening of the prosthesis—the possibility of metallosis and related inflammation or other allergic reactions,...
-
The Influence of Laser Alloying of Ti13Nb13Zr on Surface Topography and Properties
PublikacjaThe laser alloying is a continually developing surface treatment because of its significant and specific structuration of a surface. In particular, it is applied for Ti alloys, being now the most essential biomaterials` group for load-bearing implants. The present research was performed on the Ti13Nb13Zr alloy subject to laser modification in order to determine the treatment effects on surface topography and its some mechanical...
-
Osteoblast and bacterial cell response on RGD peptide‐functionalized chitosan coatings electrophoretically deposited from different suspensions on Ti13Nb13Zr alloy
PublikacjaMetallic materials for long-term load-bearing implants still do not provide high antimicrobial activity while maintaining strong compatibility with bone cells. This study aimed to modify the surface of Ti13Nb13Zr alloy by electrophoretic deposition of a chitosan coating with a covalently attached Arg-Gly-Asp (RGD) peptide. The suspensions for coating deposition were prepared in two different ways either using hydroxyacetic acid...
-
A Multi Rig Screening Test for Thin Ceramic Coatings in Bio - Tribological Applications
PublikacjaA method is presented for the comparative testing of wear resistance of ceramic coatings made from materials potentially feasible in tribo - medical applications, mainly orthopaedic implants made from ceramics coated metals for low cost, long life and low wear particle emission into the body. The method was devised as the main tool for use in research and is comprised of flat on flat and ball on flat surface (sliding) tests. Seven...
-
Electrochemically assisted deposition of hydroxyapatite on Ti6Al4V substrates covered by CVD diamond films — Coating characterization and first cell biological results
PublikacjaAlthough titaniumand its alloys are widely used as implant material for orthopedic and dental applications they show only limited corrosion stability and osseointegration in different cases. The aim of the presented research was to develop and characterize a novel surface modification system from a thin diamond base layer and a hydroxyapatite (HAp) top coating deposited on the alloy Ti6Al4V widely used for implants in contact with bone....
-
Spectroscopic studies of Nb-doped tricalcium phosphate glass-ceramics prepared by sol-gel method
PublikacjaCalcium-phosphate based glasses and glass-ceramics play a crucial role in the tissue engineering development. Apart from their high biocompatibility and excellent ability to undergo varying degrees of resorbability1, they exhibit relatively high bioactivity and due to that they are commonly used as bone and dental implants. A substantial research effort is devoted to improve calcium-phosphate materials physico-chemical properties...
-
Anticancer imidazoacridinone C-1311 inhibits hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and angiogenesis
PublikacjaAntitumor imidazoacridinone C-1311 is a DNA-reactive topoisomerase II and FLT3 receptor tyrosine kinase inhibitor. Here, we demonstrate the mechanism of C-1311 inhibitory action on novel targets: hypoxia-inducible factor-1α (HIF-1α), vascular-endothelial growth factor (VEGF), and angiogenesis. In a cell-free system, C-1311 prevented HIF-1α binding to an oligonucleotide encompassing a canonical hypoxia-responsive element (HRE),...