Filtry
wszystkich: 160
wybranych: 150
Wyniki wyszukiwania dla: METRICS
-
Machine learning applied to acoustic-based road traffic monitoring
PublikacjaThe motivation behind this study lies in adapting acoustic noise monitoring systems for road traffic monitoring for driver’s safety. Such a system should recognize a vehicle type and weather-related pavement conditions based on the audio level measurement. The study presents the effectiveness of the selected machine learning algorithms in acoustic-based road traffic monitoring. Bases of the operation of the acoustic road traffic...
-
Enabling Deeper Linguistic-based Text Analytics – Construct Development for the Criticality of Negative Service Experience
PublikacjaSignificant progress has been made in linguistic-based text analytics particularly with the increasing availability of data and deep learning computational models for more accurate opinion analysis and domain-specific entity recognition. In understanding customer service experience from texts, analysis of sentiments associated with different stages of the service lifecycle is a useful starting point. However, when richer insights...
-
Synthesis Attempt and Structural Studies of Novel A2CeWO6 Double Perovskites (A2+ = Ba, Ca) in and outside of Ambient Conditions
PublikacjaSynthesis Attempt and Structural Studies of Novel A 2 CeWO 6 Double Perovskites (A 2+ = Ba, Ca) in and outside of Ambient Conditions Damian Wlodarczyk,* Mikolaj Amilusik, Katarzyna M. Kosyl, Maciej Chrunik, Krystyna Lawniczak-Jablonska, Michal Strankowski, Marcin Zajac, Volodymyr Tsiumra, Aneta Grochot, Anna Reszka, Andrzej Suchocki, Tomasz Giela, Przemyslaw Iwanowski, Michal Bockowski, and Hanka Przybylinska Cite This: ACS Omega...
-
A framework for onboard assessment and monitoring of flooding risk due to open watertight doors for passenger ships
PublikacjaPost-accident safety of ships is governed by damage stability, affected by watertight subdivisions which limit accidental flooding. This is important for passenger ships with watertight doors (WTDs) often fitted in the bulkheads. Awareness of the ship flooding risk due to open WTDs and the conditions under which the associated risk level changes are prerequisites for proactive risk mitigation. Accident risk is often expressed as...
-
Noise profiling for speech enhancement employing machine learning models
PublikacjaThis paper aims to propose a noise profiling method that can be performed in near real-time based on machine learning (ML). To address challenges related to noise profiling effectively, we start with a critical review of the literature background. Then, we outline the experiment performed consisting of two parts. The first part concerns the noise recognition model built upon several baseline classifiers and noise signal features...
-
Measuring the effectiveness of digital communication - social media performance: an example of the role played by AI-assisted tools at a university
PublikacjaThe aim of the article is to show the role played by AI-powered tools in measuring the effectiveness of digital communication in social media using a university case study. Therefore, a research problem was formulated to identify the metrics (KPIs) used to measure the effectiveness – non-financial outcomes – of digital social media communication at the university using AI tools. The literature review on the role of AI in digital...
-
Prediction of fracture toughness in fibre-reinforced concrete, mortar, and rocks using various Machine learning techniques
PublikacjaMachine Learning (ML) method is widely used in engineering applications such as fracture mechanics. In this study, twenty different ML algorithms were employed and compared for the prediction of the fracture toughness and fracture load in modes I, II, and mixed-mode (I-II) of various materials, including fibre-reinforced concrete, cement mortar, sandstone, white travertine, marble, and granite. A set of 401 specimens of “Brazilian...
-
A survey of automatic speech recognition deep models performance for Polish medical terms
PublikacjaAmong the numerous applications of speech-to-text technology is the support of documentation created by medical personnel. There are many available speech recognition systems for doctors. Their effectiveness in languages such as Polish should be verified. In connection with our project in this field, we decided to check how well the popular speech recognition systems work, employing models trained for the general Polish language....
-
Blue applicability grade index (BAGI) and software: a new tool for the evaluation of method practicality
PublikacjaIn this work, blue applicability grade index (BAGI) is proposed as a new metric tool for evaluating the practicality of an analytical method. BAGI can be considered complementary to the well-established green metrics, and it is mainly focused on the practical aspects of White Analytical Chemistry. This tool evaluates ten main attributes including the type of analysis, the number of analytes that are simultaneously determined, the...
-
Creating new voices using normalizing flows
PublikacjaCreating realistic and natural-sounding synthetic speech remains a big challenge for voice identities unseen during training. As there is growing interest in synthesizing voices of new speakers, here we investigate the ability of normalizing flows in text-to-speech (TTS) and voice conversion (VC) modes to extrapolate from speakers observed during training to create unseen speaker identities. Firstly, we create an approach for TTS...
-
GPU Power Capping for Energy-Performance Trade-Offs in Training of Deep Convolutional Neural Networks for Image Recognition
PublikacjaIn the paper we present performance-energy trade-off investigation of training Deep Convolutional Neural Networks for image recognition. Several representative and widely adopted network models, such as Alexnet, VGG-19, Inception V3, Inception V4, Resnet50 and Resnet152 were tested using systems with Nvidia Quadro RTX 6000 as well as Nvidia V100 GPUs. Using GPU power capping we found other than default configurations minimizing...
-
A risk comparison framework for autonomous ships navigation
PublikacjaMaritime autonomous surface ships (MASS) may operate in three predefined operational modes (OM): manual, remote, or autonomous control. Determining the appropriate OM for MASS is important for operators and competent authorities that monitor and regulate maritime traffic in given areas. However, a science-based approach to this respect is currently unavailable. To assist the selection of the proper OM, this study presents a risk-based...
-
Quality Evaluation of Speech Transmission via Two-way BPL-PLC Voice Communication System in an Underground Mine
PublikacjaIn order to design a stable and reliable voice communication system, it is essential to know how many resources are necessary for conveying quality content. These parameters may include objective quality of service (QoS) metrics, such as: available bandwidth, bit error rate (BER), delay, latency as well as subjective quality of experience (QoE) related to user expectations. QoE is expressed as clarity of speech and the ability...
-
Analysis of IMS/NGN call processing performance using phase-type distributions
PublikacjaThis work is a continuation of our research on the traffic model dedicated for design and analysis of the Next Generation Network (NGN), which is standardized for distribution of current and future multimedia services based on the IP Multimedia Subsystem (IMS). Our analytical and simulation models allow evaluation of mean Call Set-up Delay E(CSD) as well as mean Call Disengagement Delay E(CDD) in a single domain of IMS/NGN. Ensuring...
-
Review of Segmentation Methods for Coastline Detection in SAR Images
PublikacjaSynthetic aperture radar (SAR) images acquired by airborne sensors or remote sensing satellites contain the necessary information that can be used to investigate various objects of interest on the surface of the Earth, including coastlines. The coastal zone is of great economic importance and is also very densely populated. The intensive and increasing use of coasts and changes of coastlines motivate researchers to try to assess...
-
Using Continuous Integration Techniques in Open Source Projects – An Exploratory Study
PublikacjaFor a growing number of software projects, continuous integration (CI) techniques are becoming an essential part of the process. However, the maturity of their adoption in open source projects varies. In this paper, we present an empirical study on GitHub repositories to explore the use of continuous integration techniques in open source projects. Following the Goal-Question-Metric (GQM) approach, 3 research questions and 7 metrics...
-
Relationship between album cover design and music genres.
PublikacjaThe aim of the study is to find out whether there exists a relationship between typographic, compositional and coloristic elements of the music album cover design and music contained in the album. The research study involves basic statistical analysis of the manually extracted data coming from the worldwide album covers. The samples represent 34 different music genres, coming from nine countries from around the world. There are...
-
Daylight evaluation for multi-family housing in Poland
PublikacjaThis PhD dissertation focuses on methods of daylight appraisal useful in the design of the contemporary multifamily housing. The theoretical part of the thesis offers a review of daylight indicators, evaluations methods and tools within the built environment. It covers a review of daylight recommendations found in building standards and other normative documents affecting the design of the residential spaces. A pilot work survey...
-
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublikacjaRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...
-
Optimizing Control of Wastewater Treatment Plant With Reinforcement Learning: Technical Evaluation of Twin-Delayed Deep Deterministic Policy Gradient Agent
PublikacjaControl of the wastewater treatment processes presents significant challenges due to the fluctuating nature of inflow and wastewater composition, alongside the system’s non-linear dynamics. Traditional control methods struggle to adapt to these variations, leading to an economically suboptimal operation of the process and a violation of norms imposed on the quality of wastewater discharged to the catchment area. This study proposes...
-
A Survey on the Datasets and Algorithms for Satellite Data Applications
PublikacjaThis survey compiles insights and describes datasets and algorithms for applications based on remote sensing. The goal of this review is twofold: datasets review for particular groups of tasks and high-level steps of data flow between satellite instruments and end applications from an implementation and development perspective. The article outlines the generalized data processing pipelines, taking into account the variations in...
-
Thermal Image Processing for Respiratory Estimation from Cubical Data with Expandable Depth
PublikacjaAs healthcare costs continue to rise, finding affordable and non-invasive ways to monitor vital signs is increasingly important. One of the key metrics for assessing overall health and identifying potential issues early on is respiratory rate (RR). Most of the existing methods require multiple steps that consist of image and signal processing. This might be difficult to deploy on edge devices that often do not have specialized...
-
Psychological and physical components in forming preferences on urban greenery management – The case of trees
PublikacjaPublic opinion is increasingly important in managing urban greenery. In this regard, this study demonstrates the importance of sociological (environmental worldviews), psychological (place attachment, perceived benefits of trees), and physical factors (type of building people live in, and urban greenery) in forming residents’ opinions on whether the municipality or landowners should decide about tree removal on private land. Logistic...
-
Open extensive IoT research and measurement infrastructure for remote collection and automatic analysis of environmental data.
PublikacjaInternet of Things devices that send small amounts of data do not need high bit rates as it is the range that is more crucial for them. The use of popular, unlicensed 2.4 GHz and 5 GHz bands is fairly legally enforced (transmission power above power limits cannot be increased). In addition, waves of this length are very diffiult to propagate under field conditions (e.g. in urban areas). The market response to these needs are the...
-
Deep CNN based decision support system for detection and assessing the stage of diabetic retinopathy
PublikacjaThe diabetic retinopathy is a disease caused by long-standing diabetes. Lack of effective treatment can lead to vision impairment and even irreversible blindness. The disease can be diagnosed by examining digital color fundus photographs of retina. In this paper we propose deep learning approach to automated diabetic retinopathy screening. Deep convolutional neural networks (CNN) - the most popular kind of deep learning algorithms...
-
Tolerance Optimization of Antenna Structures by Means of Response Feature Surrogates
PublikacjaFabrication tolerances and other types of uncertainties, e.g., the lack of precise knowledge of material parameters, have detrimental effects on electrical and field performance of antenna systems. In the case of input characteristics these are particularly noticeable for narrow- and multi-band antennas where deviations of geometry parameters from their nominal values lead to frequency shifts of the operating frequency bands. Improving...
-
Computational Methods for Liver Vessel Segmentation in Medical Imaging: A Review
PublikacjaThe segmentation of liver blood vessels is of major importance as it is essential for formulating diagnoses, planning and delivering treatments, as well as evaluating the results of clinical procedures. Different imaging techniques are available for application in clinical practice, so the segmentation methods should take into account the characteristics of the imaging technique. Based on the literature, this review paper presents...
-
Simulator for Performance Evaluation of ASON/GMPLS Network
PublikacjaThe hierarchical control plane network architecture of Automatically Switched Optical Network with utilization of Generalized Multi-Protocol Label Switching protocols is compliant to next generation networks requirements and can supply connections with required quality of service, even with incomplete domain information. Considering connection control, connection management and network management, the controllers of this architecture...
-
Normalized Partial Scattering Cross Section for Performance Evaluation of Low-Observability Scattering Structures
PublikacjaThe development of diffusion metasurfaces created new opportunities to elevate the stealthiness of combat aircraft. Despite the potential significance of metasurfaces, their rigorous design methodologies are still lacking, especially in the context of meticulous control over the scattering of electromagnetic (EM) waves through geometry parameter tuning. Another practical issue is insufficiency of the existing performance metrics,...
-
Super-resolved Thermal Imagery for High-accuracy Facial Areas Detection and Analysis
PublikacjaIn this study, we evaluate various Convolutional Neural Networks based Super-Resolution (SR) models to improve facial areas detection in thermal images. In particular, we analyze the influence of selected spatiotemporal properties of thermal image sequences on detection accuracy. For this purpose, a thermal face database was acquired for 40 volunteers. Contrary to most of existing thermal databases of faces, we publish our dataset...
-
Deep learning-based waste detection in natural and urban environments
PublikacjaWaste pollution is one of the most significant environmental issues in the modern world. The importance of recycling is well known, both for economic and ecological reasons, and the industry demands high efficiency. Current studies towards automatic waste detection are hardly comparable due to the lack of benchmarks and widely accepted standards regarding the used metrics and data. Those problems are addressed in this article by...
-
Light4Health eLearning Course: health research for interior lighting design. Re-thinking design approaches based on science
PublikacjaThis paper presents the results of 'Light4Health' (L4H), a three-year EU Erasmus+ Strategic Partnership grant project (2019-2021), which investigated, systematized and taught health-related research on the impact of natural and artificial light on human health and well-being relevant to indoor lighting design. The objective was to re-think evidence-based lighting design approaches for residential, working/educational, and healthcare...
-
Customer Assessment of Brand Valuation and Social Media
PublikacjaThe research problem engaged in this article is to determine whether contemporary consumers are able to assess brand equity in the overabundance of brands and products with similar features and qualities. The author argues that in the existing circumstances when differences between brands become insignificant the consumer is not capable of assessing their equity adequately. In order to verify the thesis the author has accepted...
-
Dual-band Millimetre Wave MIMO Antenna with Reduced Mutual Coupling Based on Optimized Parasitic Structure and Ground Modification
PublikacjaIn this study, a high-isolation dual-band (28/38 GHz) multiple-input–multiple-output (MIMO) antenna for 5G millimeter-wave applications is presented. The antenna consists of two interconnected patches. The primary patch is connected to the inset feed, while the secondary patch is arc-shaped and positioned over the main patch, opposite to the feed. Both patches function in the lower 28 GHz band, while the primary patch is accountable...
-
Combining MUSHRA Test and Fuzzy Logic in the Evaluation of Benefits of Using Hearing Prostheses
PublikacjaAssessing the effectiveness of hearing aid fittings based on the benefits they provide is crucial but intricate. While objective metrics of hearing aids like gain, frequency response, and distortion are measurable, they do not directly indicate user benefits. Hearing aid performance assessment encompasses various aspects, such as compensating for hearing loss and user satisfaction. The authors suggest enhancing the widely used...
-
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
PublikacjaThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...
-
Impact of AlphaFold on structure prediction of protein complexes: The CASP15‐CAPRI experiment
PublikacjaWe present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody–antigen complexes, and 7 large assemblies. On average 70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups...
-
Mathematical approach to design 3D scaffolds for the 3D printable bone implant
PublikacjaThis work demonstrates that an artificial scaffold structure can be designed to exhibit mechanical properties close to the ones of real bone tissue, thus highly reducing the stress-shielding phenomenon. In this study the scan of lumbar vertebra fragment was reproduced to create a numerical 3D model (this model was called the reference bone sample). New nine 3D scaffold samples were designed and their numerical models were created....
-
Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland
PublikacjaWind energy (WE), which is one of the renewable energy (RE) sources for generating electricity, has been making a significant contribution to obtaining clean and green energy in recent years. Fitting an appropriate statistical distribution to the wind speed (WS) data is crucial in analyzing and estimating WE potential. Once the best suitable statistical distribution for WS data is determined, WE potential and potential yield could...
-
Badanie i analiza efektywności alokacji strumieni danych w heterogenicznej sieci WBAN
PublikacjaW niniejszej dysertacji doktorskiej poddano dyskusji efektywność alokacji strumieni danych w heterogenicznej radiowej sieci WBAN (Wireless Body Area Networks). Biorąc pod uwagę dynamiczny rozwój nowoczesnych sieci radiokomunikacyjnych piątej generacji (5G), którego część stanowią radiowe sieci działające w obrębie ciała człowieka, bardzo ważnym aspektem są metody maksymalizujące wykorzystanie dostępnych zasobów czasowo –częstotliwościowych...
-
Design and Optimization of a Compact Super-Wideband MIMO Antenna with High Isolation and Gain for 5G Applications
PublikacjaThis paper presents a super-wideband multiple-input multiple-output (SWB MIMO) antenna with low profile, low mutual coupling, high gain and compact size for microwave and millimeter wave (mm-wave) fifth-generation (5G) applications. A single antenna is a simple elliptical-square shape with a small physical size of 20 × 20 × 0.787 mm3. The combination of both square and elliptical shapes results in an exceptionally broad impedance...
-
Evaluating the risk of endometriosis based on patients’ self-assessment questionnaires
PublikacjaBackground Endometriosis is a condition that significantly affects the quality of life of about 10 % of reproductive-aged women. It is characterized by the presence of tissue similar to the uterine lining (endometrium) outside the uterus, which can lead lead scarring, adhesions, pain, and fertility issues. While numerous factors associated with endometriosis are documented, a wide range of symptoms may still be undiscovered. Methods In...
-
Rapid tolerance‐aware design of miniaturized microwave passives by means of confined‐domain surrogates
PublikacjaThe effects of uncertainties, primarily manufacturing tolerances but also incomplete information about operating conditions or material parameters, can be detrimental to the performance of microwave components. Quantification of such effects is essential to ensure a meaningful evaluation of the structure, in particular, its reliability under imperfect fabrication procedures. The improvement of the circuit robustness can be achieved...
-
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publikacja3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...
-
Screening of predicted synergistic multi-target therapies in glioblastoma identifies new treatment strategies
PublikacjaAbstract Background IDH-wildtype glioblastoma (GBM) is a highly malignant primary brain tumor with a median survival of 15 months after standard of care, which highlights the need for improved therapy. Personalized combination therapy has shown to be successful in many other tumor types and could be beneficial for GBM patients. Methods We performed the largest drug combination screen to date in GBM, using a high-throughput effort...
-
Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling
PublikacjaGlobal sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based...
-
Computer-Aided Diagnosis of COVID-19 from Chest X-ray Images Using Hybrid-Features and Random Forest Classifier
PublikacjaIn recent years, a lot of attention has been paid to using radiology imaging to automatically find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently. (2) Methods: Using chest X-ray images, this study proposed a cutting-edge scheme for the automatic recognition of COVID-19 and pneumonia....
-
Knowledge-based performance-driven modeling of antenna structures
PublikacjaThe importance of surrogate modeling techniques in the design of modern antenna systems has been continuously growing over the recent years. This phenomenon is a matter of practical necessity rather than simply a fashion. On the one hand, antenna design procedures rely on full-wave electromagnetic (EM) simulation tools. On the other hand, the computational costs incurred by repetitive EM analyses involved in solving common tasks...
-
Designing acoustic scattering elements using machine learning methods
PublikacjaIn the process of the design and correction of room acoustic properties, it is often necessary to select the appropriate type of acoustic treatment devices and make decisions regarding their size, geometry, and location of the devices inside the room under the treatment process. The goal of this doctoral dissertation is to develop and validate a mathematical model that allows predicting the effects of the application of the scattering...
-
AGREE—Analytical GREEnness Metric Approach and Software
PublikacjaGreen analytical chemistry focuses on making analytical procedures more environmentally benign and safer to humans. The amounts and toxicity of reagents, generated waste, energy requirements, the number of procedural steps, miniaturization, and automation are just a few of the multitude of criteria considered when assessing an analytical methodology’s greenness. The use of greenness assessment criteria requires dedicated tools. We...