Filtry
wszystkich: 58
Wyniki wyszukiwania dla: binding affinity
-
Low-Barrier Hydrogen Bond Determines Target-Binding Affinity and Specificity of the Antitubercular Drug Bedaquiline
PublikacjaThe role of short strong hydrogen bonds (SSHB) in ligand-target binding remains largely unexplored, thereby hin- dering a potentially important avenue in the rational drug de- sign. Here, we investigate the interaction between bedaquiline (Bq), a potent anti-tuberculosis drug, and the mycobacterial ATP synthase, to unravel the role of a specific hydrogen bond to a conserved acidic residue in the target affinity and specificity....
-
Similarities and differences in affinity and binding modes of tricyclic pyrimido- and pyrazinoxanthines at human and rat adenosine receptors
Publikacja -
Membrane Sterols Modulate the Binding Mode of Amphotericin B without Affecting Its Affinity for a Lipid Bilayer
PublikacjaMembrane-active antibiotics are known to selectively target certain pathogens based on cell membrane properties, such as fluidity, lipid ordering, and phase behavior. These are in turn modulated by the composition of a lipid bilayer and in particular by the presence and type of membrane sterols. Amphotericin B (AmB), the golden standard of antifungal treatment, exhibits higher activity toward ergosterol-rich fungal membranes, which...
-
Effect of Ion and Binding Site on the Conformation of Chosen Glycosaminoglycans at the Albumin Surface
PublikacjaAlbumin is one of the major components of synovial fluid. Due to its negative surface charge, it plays an essential role in many physiological processes, including the ability to form molecular complexes. In addition, glycosaminoglycans such as hyaluronic acid and chondroitin sulfate are crucial components of synovial fluid involved in the boundary lubrication regime. This study presents the influence of Na+, Mg2+ and Ca2+ ions...
-
A mobile loop order–disorder transition modulates the speed of chaperonin cycling
PublikacjaMolecular machines order and disorder polypeptides as they form and dissolve large intermolecular interfaces, but the biological significance of coupled ordering and binding has been established in few, if any, macromolecular systems. The ordering and binding of GroES co-chaperonin mobile loops accompany an ATP-dependent conformational change in the GroEL chaperonin that promotes client protein folding. Following ATP hydrolysis,...
-
An insight into the mixed quantum mechanical-molecular dynamics simulation of a ZnII-Curcumin complex with a chosen DNA sequence that supports experimental DNA binding investigations
PublikacjaAn important aspect of research pertaining to Curcumin (HCur) is the need to arrest its degradation in aqueous solution and in biological milieu. This may be achieved through complex formation with metal ions. For this reason, a complex of HCur was prepared with ZnII, that is not likely to be active in redox pathways, minimizing further complications. The complex is monomeric, tetrahedral, with one HCur, an acetate and a molecule...
-
In vitro affinity of Deinococcus radiodurans MutS towards mismatched DNA exceeds that of its orthologues from Escherichia coli and Thermus thermophilus
PublikacjaThe mismatch binding protein MutS is responsible for the recognition of mispaired and unpaired bases, which is the initial step in DNA repair. Among the MutS proteins most extensively studied in vitro are those derived from Thermus thermophilus, Thermus aquaticus and Escherichia coli. Here, we present the first report on the in vitro examination of DNA mismatch binding activity of MutS protein from Deinococcus radiodurans and confront...
-
Mapping the Structural and Dynamic Determinants of pH-Sensitive Heparin Binding to Granulocyte Macrophage Colony Stimulating Factor
PublikacjaGranulocyte macrophage colony stimulating factor (GMCSF) is an immunomodulatory cytokine that is harnessed as a therapeutic. GMCSF is known to interact with other clinically important molecules, such as heparin, suggesting that endogenous and administered GMCSF has the potential to modulate orthogonal treatment outcomes. Thus, molecular level characterization of GMCSF and its interactions with biologically active compounds is critical...
-
Predicting Value of Binding Constants of Organic Ligands to Beta-Cyclodextrin: Application of MARSplines and Descriptors Encoded in SMILES String
PublikacjaThe quantitative structure–activity relationship (QSPR) model was formulated to quantify values of the binding constant (lnK) of a series of ligands to beta–cyclodextrin (β-CD). For this purpose, the multivariate adaptive regression splines (MARSplines) methodology was adopted with molecular descriptors derived from the simplified molecular input line entry specification (SMILES) strings. This approach allows discovery of regression...
-
Molecular dynamics simulations of the affinity of chitin and chitosan for collagen: the effect of pH and the presence of sodium and calcium cations
PublikacjaChitosan and chitin are promising biopolymers used in many areas including biomedical applications, such as tissue engineering and viscosupplementation. Chitosan shares similar properties with hyaluronan, a natural component of synovial fluid, making it a good candidate for joint disease treatment. The structural and energetic consequences of intermolecular interactions are crucial for understanding the biolubrication phenomenon...
-
Identification and characterization of single-stranded DNA-binding protein from the facultative psychrophilic bacteria Pseudoalteromonas haloplanktis
PublikacjaSingle-stranded DNA-binding protein (SSB) plays an important role in DNA metabolism such as DNAreplication, repair, and recombination, and is essential for cell survival. This study reports on the ssb-likegene cloning, gene expression and characterization of a single-stranded DNA-binding protein of Pseudoal-teromonas haloplanktis (PhaSSB) and is the first report of such a protein from psychrophilic microorganism.PhaSSB possesses...
-
Molecular mechanism and energetics of coupling between substrate binding and product release in the F 1 -ATPase catalytic cycle
PublikacjaF1-ATPase is a motor protein that couples the rotation of its rotary γ subunit with ATP synthesis or hydrolysis. Single-molecule experiments indicate that nucleotide binding and release events occur almost simultaneously during the synthesis cycle, allowing the energy gain due to spontaneous binding of ADP to one catalytic β subunit to be directly harnessed for driving the release of ATP from another rather than being dissipated...
-
Telomere uncapping by common oxidative guanine lesions: Insights from atomistic models
PublikacjaOxidative damage to DNA is widely known to contribute to aging and disease. This relationship has been extensively studied for telomeres – structures that cap chromosome ends – due to their role in cell proliferation and senescence, and exceptional susceptibility to oxidation. Indeed, the repetitive telomeric DNA sequence contains the 5′-GGG-3′ motif that has the lowest ionization potential of all trinucleotides. Accordingly, experiments...
-
Characterization of Bioactivity of Selective Molecules in Fruit Wines by FTIR and NMR Spectroscopies, Fluorescence and Docking Calculations
PublikacjaFourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopies were applied to characterize and compare the chemical shifts in the polyphenols’ regions of some fruit wines. The obtained results showed that FTIR spectra (1800–900 cm−1) and 1H NMR (δ 6.5–9.3 ppm) of different fruit wines can be used as main indices of the year of vintage and quality of fruit wines. In addition to the classical determination...
-
Modification of gradient HPLC method for determination of small molecules' affinity to human serum albumin under column safety conditions: Robustness and chemometrics study
PublikacjaIn the early stages of drug discovery, beyond the biological activity screening, determining the physicochemical properties that affect the distribution of molecules in the human body is an essential step. Plasma protein binding (PPB) is one of the most important investigated endpoints. Nevertheless, the methodology for measuring %PPB is significantly less popular and standardized than other physicochemical properties, like lipophilicity....
-
Chiral Pyrazolo[4,3-e][1,2,4]triazine Sulfonamides—Their Biological Activity, Lipophilicity, Protein Affinity, and Metabolic Transformations
PublikacjaReferring to our previous laboratory results related to the tyrosinase and urease inhibition by pyrazolo[4,3-e][1,2,4]triazine sulfonamides, we examined here in silico the mechanism of action at the molecular level of the investigated pyrazolotriazine sulfonamides by the molecular docking method. The studied compounds being evaluated for their cytotoxic effect against cancer cell lines (MCF-7, K-562) and for recombinant Abl and...
-
How proteins bind to DNA: target discrimination and dynamic sequence search by the telomeric protein TRF1
PublikacjaTarget search as performed by DNA-binding proteins is a complex process, in which multiple factors contribute to both thermodynamic discrimination of the target sequence from overwhelmingly abundant off-target sites and kinetic acceleration of dynamic sequence interrogation. TRF1, the protein that binds to telomeric tandem repeats, faces an intriguing variant of the search problem where target sites are clustered within short fragments...
-
Collagen type II–hyaluronan interactions – the effect of proline hydroxylation: a molecular dynamics study
PublikacjaHyaluronan–collagen composites have been employed in numerous biomedical applications. Understanding the interactions between hyaluronan and collagen is particularly important in the context of joint cartilage function and the treatment of joint diseases. Many factors affect the affinity of collagen for hyaluronan. One of the important factors is the ratio of 3- or 4-hydroxy proline to proline residues. This article presents...
-
Towards β-selectivity in functional estrogen receptor antagonists
PublikacjaBased on the benzo[b]naphtho[1,2-d]furan and benzo[b]naphtho[1,2-d]thiophene frameworks, a series of ligands with different basic side chains (BSCs) has been synthesized and pharmacologically evaluated. Also, their binding modes have been modelled using docking techniques. It was found that the introduction of a BSC in these systems brings about a decrease of affinity for both estrogen receptors α and β in an in vitro competitive...
-
Mechanism of recognition of parallel G-quadruplexes by DEAH/RHAU helicase DHX36 explored by molecular dynamics simulations
PublikacjaBecause of high stability and slow unfolding rates of G-quadruplexes (G4), cells have evolved specialized helicases that disrupt these non-canonical DNA and RNA structures in an ATP-dependent manner. One example is DHX36, a DEAH-box helicase, which participates in gene expression and replication by recognizing and unwinding parallel G4s. Here, we studied the molecular basis for the high affinity and specificity of DHX36 for parallel-type...
-
Selective detection of F- by chromogenic tetrazole receptor
PublikacjaA chromogenic anion host 4, containing two amide functionalities linked to azo dye and tetrazole rings was synthesized and its complexes with various anions were investigated. The results show that receptor 4 can recognize selectively biologically important F- ion. The binding affinity for F- was investigated by naked-eye colour change, UV-Vis and 1H NMR spectroscopy. Addition F- ion in CH3CN and DMSO to receptor 4 cause a colour...
-
Optimization of Chemical Functionalities of Indole-2-carboxamides To Improve Allosteric Parameters for the Cannabinoid Receptor 1 (CB1)
Publikacja5-Chloro-3-ethyl-N-(4-(piperidin-1-yl)phenethyl)-1H-indole-2-carboxamide (1; ORG27569) is a prototypical allosteric modulator for the cannabinoid type 1 receptor (CB1). Here, we reveal key structural requirements of indole-2-carboxamides for allosteric modulation of CB1: a critical chain length at the C3-position, an electron withdrawing group at the C5-position, the length of the linker between the amide bond and the phenyl ring...
-
Collagen Type II—Chitosan Interactions as Dependent on Hydroxylation and Acetylation Inferred from Molecular Dynamics Simulations
PublikacjaChitosan–collagen blends have been widely applied in tissue engineering, joints diseases treatment, and many other biomedical fields. Understanding the affinity between chitosan and collagen type II is particularly relevant in the context of mechanical properties modulation, which is closely associated with designing biomaterials suitable for cartilage and synovial fluid regeneration. However, many structural features influence...
-
Molecular basis and quantitative assessment of TRF1 and TRF2 protein interactions with TIN2 and Apollo peptides
PublikacjaShelterin is a six-protein complex (TRF1, TRF2, POT1, RAP1, TIN2, and TPP1) that also functions in smaller subsets in regulation and protection of human telomeres. Two closely related proteins, TRF1 and TRF2, make high-affinity contact directly with double-stranded telomeric DNA and serve as a molecular platform. Protein TIN2 binds to TRF1 and TRF2 dimer-forming domains, whereas Apollo makes interaction only with TRF2. To elucidate...
-
Mechanochemical Energy Transduction during the Main Rotary Step in the Synthesis Cycle of F1-ATPase
PublikacjaF1-ATPase is a highly efficient molecular motor that can synthesize ATP driven by a mechanical torque. Its ability to function reversibly in either direction requires tight mechanochemical coupling between the catalytic domain and the rotating central shaft, as well as temporal control of substrate binding and product release. Despite great efforts and significant progress, the molecular details of this synchronized and fine-tuned...
-
Identification of 1H‐indene‐(1, 3, 5, 6)‐tetrol derivatives as potent pancreatic lipase inhibitors using molecular docking and molecular dynamics approach
PublikacjaPancreatic lipase is a potential therapeutic target to treat diet-induced obesity in humans, as obesity-related diseases continue to be a global problem. Despite intensive research on finding potential inhibitors, very few compounds have been introduced to clinical studies. In this work, new chemical scaffold 1H-indene-(1,3,5,6)-tetrol was proposed using knowledge-based approach, and 36 inhibitors were derived by modifying its...
-
Exploring novel Cd(ii) complexes with 5-methyl-4-imidazolecarboxaldehyde: synthesis, structure, computational insights, and affinity to DNA through switchSense methodology
PublikacjaA series of four Cd(II) complexes with 5-methyl-4-imidazolecarboxaldehyde (L) with different inorganic anions within or outside the coordination sphere of general formula: [CdCl2 L2 ] (1), [CdBr2 L 2] (2), [CdI2L 2] (3), and [CdL4 ](PF6 )2 ·3H2 O (4) was synthesized through one-step and two-step reactions, respectively. All complexes were obtained as colorless crystals without the need for recrystallization and exhibited solubi- lity...
-
Integration of protein tethering in a rapid and label-free SERS screening platform for drugs of abuse
PublikacjaSurface enhanced Raman spectroscopy (SERS) has emerged as a promising technique for the rapid and ultrasensitive detection of molecular species such as drugs of abuse in biofluids. Yet, it remains a significant challenge to create a viable screening tool for multiple drug classes, owing to the lack of affinity of certain species for the SERS substrate and to the matrix interference in complex media. Here we report a protein tethering...
-
Structural, functional, and stability change predictions in human telomerase upon specific point mutations,
PublikacjaOverexpression of telomerase is one of the hallmarks of human cancer. Telomerase is important for maintaining the integrity of the ends of chromosomes, which are called telomeres. A growing number of human disease syndromes are associated with organ failure caused by mutations in telomerase (hTERT or hTR). Mutations in telomerase lead to telomere shortening by decreasing the stability of the telomerase complex, reducing its accumulation,...
-
Rotation Triggers Nucleotide-Independent Conformational Transition of the Empty β Subunit of F1-ATPase
PublikacjaF1-ATPase (F1) is the catalytic portion of ATP synthase, a rotary motor protein that couples proton gradients to ATP synthesis. Driven by a proton flux, the F1 asymmetric γ subunit undergoes a stepwise rotation inside the α3β3 headpiece and causes the β subunits’ binding sites to cycle between states of different affinity for nucleotides. These concerted transitions drive the synthesis of ATP from ADP and phosphate. Here, we study...
-
Studies of the Interaction Dynamics in Albumin-Chondroitin Sulfate Systems by Recurrence Method
PublikacjaThe physicochemical basis of lubrication of articular cartilage is still not fully understood. However, the synergy between components of the synovial fluid can be a crucial factor that could explain this phenomenon. This work presents a nonlinear data analysis technique named the recurrence method, applied to the system involving two components of synovial fluid: albumin and chondroitin sulfate (CS) immersed in a water environment....
-
How acidic amino acid residues facilitate DNA target site selection
PublikacjaDespite the negative charge of the DNA backbone, acidic residues (Asp/Glu) commonly participate in the base readout, with a strong preference for cytosine. In fact, in the solved DNA/protein structures, cytosine is recognized almost exclusively by Asp/Glu through a direct hydrogen bond, while at the same time, adenine, regardless of its amino group, shows no propensity for Asp/Glu. Here, we analyzed the contribution of Asp/Glu...
-
Albumin–Hyaluronan Interactions: Influence of Ionic Composition Probed by Molecular Dynamics
PublikacjaThe lubrication mechanism in synovial fluid and joints is not yet fully understood. Nevertheless, intermolecular interactions between various neutral and ionic species including large macromolecular systems and simple inorganic ions are the key to understanding the excellent lubrication performance. An important tool for characterizing the intermolecular forces and their structural consequences is molecular dynamics. Albumin...
-
99mTc-Galacto-RGD2: A Novel 99mTc-Labeled Cyclic RGD Peptide Dimer Useful for Tumor Imaging
PublikacjaThis study sought to evaluate [99mTc(HYNIC-Galacto-RGD2)-(tricine)(TPPTS)] (99mTc-Galacto-RGD2: HYNIC = 6-hydrazinonicotinyl; Galacto-RGD2 = Glu[cyclo[Arg-Gly-Asp-D-Phe-Lys(SAA-PEG2-(1,2,3-triazole)-1-yl-4-ethylamide)]]2 (SAA = 7-amino-L-glycero-L-galacto-2,6-anhydro-7-eoxyheptanamide, and PEG2 = 3,6-dioxaoctanoic acid); and TPPTS = trisodium triphenylphosphine-3,3',3''-trisulfonate) as a new radiotracer for tumor imaging. Galacto-RGD2...
-
Thermodynamics aspects of interactions between acridine derivatives and DNA
PublikacjaDNA is a molecular target for many anticancer and antiviral drugs. Therefore, a clear understanding of the interaction of small molecules with DNA is important in the rational design of ligands that can bind to DNA with high affinity and selectivity. There are several methods to investigate interactions between drug and DNA. Some of them measure changing into DNA structures, such as lengthening and untwisting of helix of DNA. Other...
-
Unraveling the Interplay between DNA and Proteins: A Computational Exploration of Sequence and Structure-Specific Recognition Mechanisms
PublikacjaMy PhD dissertation focused on DNA-protein interactions and the recognition of specific DNA sequences and structures. I discovered that acidic amino acid residues (Asp/Glu) play a crucial role by exhibiting a preference for cytosine. Their contribution to binding affinity depends on nearby cytosines, balancing electrostatic repulsion with specific interactions. Acidic residues act as negative selectors, discouraging non-cytosine...
-
Organic solvents aggregating and shaping structural folding of protein, a case study of the protease enzyme
PublikacjaLow solubility of reactants or products in aqueous solutions can result in the enzymatic catalytic reactions that can occur in non-aqueous solutions. In current study we investigated aqueous solutions containing different organic solvents / deep eutectic solvents (DESs) that can influence the protease enzyme's activity, structural, and thermal stabilities. Retroviral aspartic protease enzyme is responsible for the cleavage of the...
-
Immunization with an anti-idiotypic antibody against the broadly lipopolysaccharide-reactive antibody WN1 222-5 induces Escherichia coli R3-core-type specific antibodies in rabbits
PublikacjaThe mouse monoclonal antibody (mAb) WN1 222-5 recognizes a carbohydrate epitope in the inner core region of LPS that is shared by all strains of Escherichia coli and Salmonella enterica and is able to neutralize their endotoxic activity in vitro and in vivo. Immunization of mice with mAb WN1 222-5 yielded several anti-idiotypic mAbs one of which (mAb S81-19) competitively inhibited binding of mAb WN1 222-5 to E. coli and Salmonella...
-
Antitumor Activity of Triazine Mimic Antibiotics for DNA-binding Implications (Impressive Activity in Vitro Against a Variety of Tumor Types in the NCI-60 Screen): NSC 710607 To Fight HCT-116 Human Colon Carcinoma Cell Lines in Vivo Using the Hollow Fiber Assay and Xenograft Mouse Models
PublikacjaPurpose Successful clinical applications of DNA-directed selective cytotoxic agents disrupt the vital replication/transcription processes and ultimately lead to cancer cell death. This study aimed to examine the growth screen of two lead triazine compounds in a number of cell lines and xenografts and to develop anticancer agents with noncovalent binding affinity bringing fewer side effects. Methods The NCI initial hollow...
-
Evaluation of Three Peptide Immobilization Techniques on a QCM Surface Related to Acetaldehyde Responses in the Gas Phase
PublikacjaThe quartz-crystal microbalance is a sensitive and universal tool for measuring concentrations of various gases in the air. Biochemical functionalization of the QCM electrode allows a label-free detection of specific molecular interactions with high sensitivity and specificity. In addition, it enables a real-time determination of its kinetic rates and affinity constants. This makes QCM a versatile bioanalytical screening tool for...
-
Phosphorylation‐mediated regulation of heat shock response in Escherichia coli
PublikacjaEscherichia coli has two heat shock regulons under the transcriptional control of Esigma(32) and Esigma(E) RNA polymerases. These polymerases control the expression of genes, the products of which are needed for correct folding of proteins in the cytoplasm and the extracytoplasm respectively. In this study, we report that mutations in a tyrosine phosphatase-encoding gene led to decreased activity of these heat shock regulons. The...
-
Effect of chemical structure on complexation efficiency of aromatic drugs with cyclodextrins: The example of dibenzazepine derivatives
PublikacjaIt is widely believed that the hydrophobic effect governs the binding of guest molecules to cyclodextrins (CDs). However, it is also known that high hydrophobicity of guest molecules does not always translate to the formation of stable inclusion complexes with CDs. Indeed, a plethora of other factors can play a role in the efficiency of guest–CD interactions, rendering structure-based prediction of the complexation efficiency with...
-
A magnetic imprinted polymer nano-adsorbent with embedded quantum dots and mesoporous carbon for the microextraction of triazine herbicides
PublikacjaA magnetic molecularly imprinted polymer (MMIP) adsorbent incorporating amino-functionalized magnetite nanoparticles, nitrogen-doped graphene quantum dots and mesoporous carbon (MIP@MPC@NGQDs@ Fe3O4–NH2) was fabricated to extract triazine herbicides from fruit juice. The embedded magnetite nanoparticles simplified the isolation of the adsorbent from the sample solution. The N-GQDs and MPC enhanced adsorption by affinity binding...
-
Reverse vaccinology-based prediction of a multi-epitope SARS-CoV-2 vaccine and its tailoring to new coronavirus variants
PublikacjaThe genome feature of SARS-CoV-2 leads the virus to mutate and creates new variants of concern. Tackling viral mutations is also an important challenge for the development of a new vaccine. Accordingly, in the present study, we undertook to identify B- and T-cell epitopes with immunogenic potential for eliciting responses to SARS-CoV-2, using computational approaches and its tailoring to coronavirus variants. A total of 47 novel...
-
Novel 2-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)-1-(1,3,5-triazin-2-ylamino)guanidine derivatives: Inhibition of human carbonic anhydrase cytosolic isozymes I and II and the transmembrane tumor-associated isozymes IX and XII, anticancer activity, and molecular modeling studies
PublikacjaA series of novel 2-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)-1-(6-substituted-4-chloro-1,3,5-triazin-2-ylamino)guanidine derivatives 9–20 have been synthesized by substitution of chlorine atom at the 1,3,5-triazine ring in compounds 5–8 with 3- or 4-aminobenzenesulfonamide and 4-(aminomethyl)benzenesulfonamide hydrochloride. All the synthesized compounds were evaluated for their inhibitory activity toward hCA I, II,...
-
Analysis of Reconstituted Tripartite Complex Supports Avidity-based Recruitment of Hsp70 by Substrate Bound J-domain Protein
PublikacjaHsp70 are ubiquitous, versatile molecular chaperones that cyclically interact with substrate protein(s). The initial step requires synergistic interaction of a substrate and a J-domain protein (JDP) cochaperone, via its J-domain, with Hsp70 to stimulate hydrolysis of its bound ATP. This hydrolysis drives conformational changes in Hsp70 that stabilize substrate binding. However, because of the transient nature of substrate and JDP...
-
Structural factors affecting affinity of cytotoxic oxathiole-fused chalcones toward tubulin
PublikacjaSynthesis, in vitro cytotoxic activity, and interaction with tubulin of (E)-1-(6-alkoxybenzo[d][1,3]oxathiol- 5-yl)-3-phenylprop-2-en-1-one derivatives (2) are described. Some of the compounds demonstrated cytotoxic activity at submicromolar concentrations, and the activity could be related to interaction with tubulin at the colchicine binding site. Interaction of selected derivatives with tubulinwas evaluated using molecular modeling,...
-
Effect of Nanohydroxyapatite on Silk Fibroin–Chitosan Interactions—Molecular Dynamics Study
PublikacjaFibroin–chitosan composites, especially those containing nanohydroxyapatite, show potential for bone tissue regeneration. The physicochemical properties of these biocomposites depend on the compatibility between their components. In this study, the intermolecular interactions of fibroin and chitosan were analyzed using a molecular dynamics approach. Two types of systems were investigated: one containing acetic acid and the other...
-
Extracting functional groups of ALLINI to design derivatives of FDA‐approved drugs: Inhibition of HIV‐1 integrase
PublikacjaHIV‐1 integrase (IN) is crucial for integration of viral DNA into the host genome and a promising target in development of antiretroviral inhibitors. In this work, six new compounds were designed by linking the structures of two different class of HIV‐1 IN inhibitors (active site binders and allosteric IN inhibitors (ALLINIs)). Among newly designed compounds, INRAT10b was found most potent HIV‐1 IN inhibitor considering different...
-
Positron binding to alkali-metal hydrides: The role of molecular vibrations
PublikacjaThe bound vibrational levels for J=0 have been computed for the series of alkali-metal hydride molecules from LiH to RbH, including NaH and KH. For all four molecules the corresponding potential-energy curves have been obtained for each isolated species and for its positron-bound complex (e+XH). It is found that the calculated positron affinity values strongly depend on the molecular vibrational state for which they are obtained...