Filtry
wszystkich: 660
Wyniki wyszukiwania dla: NEURAL NETWORKS
-
MP3vec: A Reusable Machine-Constructed Feature Representation for Protein Sequences
Publikacja—Machine Learning (ML) methods have been used with varying degrees of success on protein prediction tasks, with two inherent limitations. First, prediction performance often depends upon the features extracted from the proteins. Second, experimental data may be insufficient to construct reliable ML models. Here we introduce MP3vec, a transferable representation for protein sequences that is designed to be used specifically for sequence-to-sequence...
-
Evaluating the Use of Edge Device Towards Fall Detection in Smart City Environment
PublikacjaThis paper presents the development and preliminary testing of a fall detection algorithm that leverages OpenPose for real-time human pose estimation from video feeds. The system is designed to function optimally within a range of up to 7 meters from ground-level cameras, focusing exclusively on detected human silhouettes to enhance processing efficiency. The performance of the proposed approach was evaluated using accuracy values...
-
A Novel Spatio–Temporal Deep Learning Vehicle Turns Detection Scheme Using GPS-Only Data
PublikacjaWhether the computer is driving your car or you are, advanced driver assistance systems (ADAS) come into play on all levels, from weather monitoring to safety. These modern-day ADASs use various assisting tools for drivers to keep the journey safe; these sophisticated tools provide early signals of numerous events, such as road conditions, emerging traffic scenarios, and weather warnings. Many urban applications, such as car-sharing...
-
Real-Time Sensor-Based Human Activity Recognition for eFitness and eHealth Platforms
PublikacjaHuman Activity Recognition (HAR) plays an important role in the automation of various tasks related to activity tracking in such areas as healthcare and eldercare (telerehabilitation, telemonitoring), security, ergonomics, entertainment (fitness, sports promotion, human–computer interaction, video games), and intelligent environments. This paper tackles the problem of real-time recognition and repetition counting of 12 types of...
-
Multi-objective optimization of tool wear, surface roughness, and material removal rate in finishing honing processes using adaptive neural fuzzy inference systems
PublikacjaHoning processes are usually employed to manufacture combustion engine cylinders and hydraulic cylinders. A crosshatch pattern is obtained that favors the oil flow. In this paper, Adaptive Neural Fuzzy Inference System (ANFIS) models were obtained for tool wear, average roughness Ra, cylindricity and material removal rate in finish honing processes. In addition, multi-objective optimization with the desirability function method...
-
The impact of the AC922 Architecture on Performance of Deep Neural Network Training
PublikacjaPractical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...
-
Musical Instrument Tagging Using Data Augmentation and Effective Noisy Data Processing
PublikacjaDeveloping signal processing methods to extract information automatically has potential in several applications, for example searching for multimedia based on its audio content, making context-aware mobile applications (e.g., tuning apps), or pre-processing for an automatic mixing system. However, the last-mentioned application needs a significant amount of research to reliably recognize real musical instruments in recordings....
-
LONG-TERM RISK CLASS MIGRATIONS OF NON-BANKRUPT AND BANKRUPT ENTERPRISES
PublikacjaThis paper investigates how the process of going bankrupt can be recognized much earlier by enterprises than by traditional forecasting models. The presented studies focus on the assessment of credit risk classes and on determination of the differences in risk class migrations between non-bankrupt enterprises and future insolvent firms. For this purpose, the author has developed a model of a Kohonen artificial neural network to...
-
Improving Accuracy of Respiratory Rate Estimation by Restoring High Resolution Features With Transformers and Recursive Convolutional Models
PublikacjaNon-contact evaluation of vital signs has been becoming increasingly important, especially in light of the COVID- 19 pandemic, which is causing the whole world to examine people’s interactions in public places at a scale never seen before. However, evaluating one’s vital signs can be a relatively complex procedure, which requires both time and physical contact between examiner and examinee. These re- quirements limit the number...
-
Controlled grafting of vinylic monomers on polyolefins: a robust mathematical modeling approach
PublikacjaExperimental and mathematical modeling analyses were used for controlling melt free-radical grafting of vinylic monomers on polyolefins and, thereby, reducing the disturbance of undesired cross-linking of polyolefins. Response surface, desirability function, and artificial intelligence methodologies were blended to modeling/optimization of grafting reaction in terms of vinylic monomer content, peroxide initiator concentration,...
-
Biopolymer-based composites for tissue engineering applications: A basis for future opportunities
PublikacjaBiomimetic scaffolds supporting tissue regeneration are complex materials with multifunctional characteristics. The unique biocompatibility and biodegradability of biopolymers make them excellent candidates for tissue engineering and regenerative medicine. Biopolymers, which have a wide range of properties, can be obtained from different natural sources. Depending on the target tissue, biopolymers can be engineered to meet a series...
-
Classification of Covid-19 using Differential Evolution Chaotic Whale Optimization based Convolutional Neural Network
PublikacjaCOVID-19, also known as the Coronavirus disease-2019, is an transferrable disease that spreads rapidly, affecting countless individuals and leading to fatalities in this worldwide pandemic. The precise and swift detection of COVID-19 plays a crucial role in managing the pandemic's dissemination. Additionally, it is necessary to recognize COVID-19 quickly and accurately by investigating chest x-ray images. This paper proposed a...
-
Self-organising maps in the analysis of strains of human abdominal wall to identify areas of similar mechanical behaviour.
PublikacjaThe study refers to the application of a type of artificial neural network called the Self-Organising Map (SOM) for the identification of areas of the human abdominal wall that behave in a similar mechanical way. The research is based on data acquired during in vivo tests using the digital image correlation technique (DIC). The mechanical behaviour of the human abdominal wall is analysed during changing intra-abdominal pressure....
-
Deep-Learning-Based Precise Characterization of Microwave Transistors Using Fully-Automated Regression Surrogates
PublikacjaAccurate models of scattering and noise parameters of transistors are instrumental in facilitating design procedures of microwave devices such as low-noise amplifiers. Yet, data-driven modeling of transistors is a challenging endeavor due to complex relationships between transistor characteristics and its designable parameters, biasing conditions, and frequency. Artificial neural network (ANN)-based methods, including deep learning...
-
Predicting Ice Phenomena in a River Using the Artificial Neural Network and Extreme Gradient Boosting
PublikacjaForecasting ice phenomena in river systems is of great importance because these phenomena are a fundamental part of the hydrological regime. Due to the stochasticity of ice phenomena, their prediction is a difficult process, especially when data sets are sparse or incomplete. In this study, two machine learning models—Multilayer Perceptron Neural Network (MLPNN) and Extreme Gradient Boosting (XGBoost)—were developed to predict...
-
Experimental tuning of AuAg nanoalloy plasmon resonances assisted by machine learning method
PublikacjaPlasmonic nanostructures based on AuAg nanoalloys were fabricated by thermal annealing of metallic films in an argon atmosphere. The nanoalloys were chosen because they can extend the wavelength range in which plasmon resonance occurs and thus allow the design of plasmonic platforms with the desired parameters. The influence of initial fabrication parameters and experimental conditions on the formation of nanostructures was investigated....
-
BP-EVD: Forward Block-Output Propagation for Efficient Video Denoising
PublikacjaDenoising videos in real-time is critical in many applications, including robotics and medicine, where varying light conditions, miniaturized sensors, and optics can substantially compromise image quality. This work proposes the first video denoising method based on a deep neural network that achieves state-of-the-art performance on dynamic scenes while running in real-time on VGA video resolution with no frame latency. The backbone...
-
Mutual Coupling Reduction in Antenna Arrays Using Artificial Intelligence Approach and Inverse Neural Network Surrogates
PublikacjaThis paper presents a novel approach to reduce undesirable coupling in antenna arrays using custom-designed resonators and inverse surrogate modeling. To illustrate the concept, two stand-ard patch antenna cells with 0.07λ edge-to-edge distance are designed and fabricated to operate at 2.45 GHz. A stepped-impedance resonator is applied between the antennas to suppress their mutual coupling. For the first time, the optimum values...
-
Neural Graph Collaborative Filtering: Analysis of Possibilities on Diverse Datasets
PublikacjaThis paper continues the work by Wang et al. [17]. Its goal is to verify the robustness of the NGCF (Neural Graph Collaborative Filtering) technique by assessing its ability to generalize across different datasets. To achieve this, we first replicated the experiments conducted by Wang et al. [17] to ensure that their replication package is functional. We received sligthly better results for ndcg@20 and somewhat poorer results for...
-
Cost-Efficient Multi-Objective Design of Miniaturized Microwave Circuits Using Machine Learning and Artificial Neural Network
PublikacjaDesigning microwave components involves managing multiple objectives such as center frequencies, impedance matching, and size reduction for miniaturized structures. Traditional multi-objective optimization (MO) approaches heavily rely on computationally expensive population-based methods, especially when exe-cuted with full-wave electromagnetic (EM) analysis to guarantee reliability. This paper introduces a novel and cost-effective...
-
Automated hearing loss type classification based on pure tone audiometry data
PublikacjaHearing problems are commonly diagnosed with the use of tonal audiometry, which measures a patient’s hearing threshold in both air and bone conduction at various frequencies. Results of audiometry tests, usually represented graphically in the form of an audiogram, need to be interpreted by a professional audiologist in order to determine the exact type of hearing loss and administer proper treatment. However, the small number of...
-
Perceptual and Motor Effects of Muscle Co-activation in a Force Production Task
PublikacjaWe tested several predictions of the theory of motor control with spatial referent coordinates related to effects of muscle coactivation on force production and perception. In particular, we predicted that subjects would produce unintentional force increase by finger flexors and be unaware of this force increase. Healthy subjects performed steady force production task in isometric conditions with visual feedback on the force level....
-
Self-Organising map neural network in the analysis of electromyography data of muscles acting at temporomandibular joint.
PublikacjaThe temporomandibular joint (TMJ) is the joint that via muscle action and jaw motion allows for necessary physiological performances such as mastication. Whereas mandible translates and rotates [1]. Estimation of activity of muscles acting at the TMJ provides a knowledge of activation pattern solely of a specific patient that an electromyography (EMG) examination was carried out [2]. In this work, a Self-Organising Maps (SOMs)...
-
Neural Oscillation During Mental Imagery in Sport: An Olympic Sailor Case Study
PublikacjaThe purpose of the current study was to examine the cortical correlates of imagery depending on instructional modality (guided vs. self-produced) using various sports-related scripts. According to the expert-performance approach, we took an idiosyncratic perspective analyzing the mental imagery of an experienced two-time Olympic athlete to verify whether different instructional modalities of imagery (i.e., guided vs. self-produced)...
-
Optimal selection of input features and an acompanying neural network structure for the classification purposes - skin lesions case study
PublikacjaMalignant melanomas are the most deadly type of skin cancers however detected early enough give a high chances for successful treatment. The last years saw the dynamic growth of interest of automatic computer-aided skin cancer diagnosis. Every month brings new research results on new approaches to this problem, new methods of preprocessing, new classifiers, new ideas to follow etc. In particular, the rapid development of dermatoscopy,...
-
High performance super-twisting sliding mode control for a maritime autonomous surface ship (MASS) using ADP-Based adaptive gains and time delay estimation
PublikacjaThis research addresses two kinds of problems related to optimal trajectory tracking of a Maritime Autonomous Surface Ship (MASS): those caused by the time-varying external disturbances including winds, waves and ocean currents as well as those resulting from inherent dynamical uncertainties. As the paper shows, an accurate and robust optimal controller can successfully deal with both issues. An improved Optimal Adaptive Super-Twisting...
-
Rating by detection: an artifact detection protocol for rating EEG quality with average event duration
PublikacjaQuantitative evaluation protocols are critical for the development of algorithms that remove artifacts from real EEG optimally. However, visually inspecting the real EEG to select the top-performing artifact removal pipeline is infeasible while hand-crafted EEG data allow assessing artifact removal configurations only in a simulated environment. This study proposes a novel, principled approach for quantitatively evaluating algorithmically...
-
Adaptive Hyperparameter Tuning within Neural Network-based Efficient Global Optimization
PublikacjaIn this paper, adaptive hyperparameter optimization (HPO) strategies within the efficient global optimization (EGO) with neural network (NN)-based prediction and uncertainty (EGONN) algorithm are proposed. These strategies utilize Bayesian optimization and multiarmed bandit optimization to tune HPs during the sequential sampling process either every iteration (HPO-1itr) or every five iterations (HPO-5itr). Through experiments using...
-
CNN-CLFFA: Support Mobile Edge Computing in Transportation Cyber Physical System
PublikacjaIn the present scenario, the transportation Cyber Physical System (CPS) improves the reliability and efficiency of the transportation systems by enhancing the interactions between the physical and cyber systems. With the provision of better storage ability and enhanced computing, cloud computing extends transportation CPS in Mobile Edge Computing (MEC). By inspecting the existing literatures, the cloud computing cannot fulfill...
-
A New Approach to Assess Quality of Motion in Functional Task of Upper Limb in Duchenne Muscular Dystrophy
Publikacja(1) Background: This study presents a new method for the motion quantitative analysis of Duchenne muscular dystrophy patients (DMD) performing functional tasks in clinical conditions. (2) Methods: An experimental study was designed to define how different levels of external mass (light and heavy) influence the performance of the upper limbs of a tested DMD and reference subject (RS) during horizontal movements (level of the waist)...
-
Design and Analysis of Artificial Neural Network (ANN) Models for Achieving Self-Sustainability in Sanitation
PublikacjaThe present study investigates the potential of using fecal ash as an adsorbent and demonstrates a self-sustaining, optimized approach for urea recovery from wastewater streams. Fecal ash was prepared by heating synthetic feces to 500 °C and then processing it as an adsorbent for urea adsorption from synthetic urine. Since this adsorption approach based on fecal ash is a promising alternative for wastewater treatment, it increases...
-
Evaluation of aspiration problems in L2 English pronunciation employing machine learning
PublikacjaThe approach proposed in this study includes methods specifically dedicated to the detection of allophonic variation in English. This study aims to find an efficient method for automatic evaluation of aspiration in the case of Polish second-language (L2) English speakers’ pronunciation when whole words are analyzed instead of particular allophones extracted from words. Sample words including aspirated and unaspirated allophones...
-
High performance super-twisting sliding mode control for a maritime autonomous surface ship (MASS) using ADP-Based adaptive gains and time delay estimation
PublikacjaThis research addresses two kinds of problems related to optimal trajectory tracking of a Maritime Autonomous Surface Ship (MASS): those caused by the time-varying external disturbances including winds, waves and ocean currents as well as those resulting from inherent dynamical uncertainties. As the paper shows, an accurate and robust optimal controller can successfully deal with both issues. An improved Optimal Adaptive Super-Twisting...
-
Perfectly Wetting Mixtures of Surfactants from Renewable Resources: The Interaction and Synergistic Effects on Adsorption and Micellization
PublikacjaThis paper presents a study of the surface properties of mixtures of surfactants originating from renewable sources, i.e., alkylpolyglucoside (APG), ethoxylated fatty alcohol (AE), and sodium soap (Na soap). The main objective was to optimize the surfactant ratio which produces the highest wetting properties during the analysis of the solution of the individual surfactants, twoand three-component mixtures, and at different pH values....
-
An experimental EEG study of brain activities underlying the Autonomous Sensory Meridian Response
PublikacjaAutonomous Sensory Meridian Response (ASMR) is an audio-visual phenomenon that has recently become popular. Many people have reported experiencing a tingling-like sensation through their body while watching audio/video clips known as ASMR clips. People capable of having such experiences have also reported improved overall well-being and feeling relaxed. However, the neural activity underlying this phenomenon is not yet well-studied....
-
Anterior prefrontal EEG theta activities indicate memory and executive functions in epilepsy patients
PublikacjaObjective: Cognitive deficits are one of the most debilitating comorbidities in epilepsy and other neurodegenerative, neuropsychiatric, and neurodevelopmental brain disorders. Current diagnostic and therapeutic options are limited and lack objective measures of the underlying neural activities. In this study, electrophysiological biomarkers that reflect cognitive functions in clinically validated batteries were determined to aid...
-
Assessing the attractiveness of human face based on machine learning
PublikacjaThe attractiveness of the face plays an important role in everyday life, especially in the modern world where social media and the Internet surround us. In this study, an attempt to assess the attractiveness of a face by machine learning is shown. Attractiveness is determined by three deep models whose sum of predictions is the final score. Two annotated datasets available in the literature are employed for training and testing...
-
How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image
PublikacjaThis study presents a human-computer interaction combined with a brain-machine interface (BMI) and obstacle detection system for remote control of a wheeled robot through movement imagery, providing a potential solution for individuals facing challenges with conventional vehicle operation. The primary focus of this work is the classification of surface EEG signals related to mental activity when envisioning movement and deep relaxation...
-
Cost-Efficient Measurement Platform and Machine-Learning-Based Sensor Calibration for Precise NO2 Pollution Monitoring
PublikacjaAir quality significantly impacts human health, the environment, and the economy. Precise real-time monitoring of air pollution is crucial for managing associated risks and developing appropriate short- and long-term measures. Nitrogen dioxide (NO2) stands as a common pollutant, with elevated levels posing risks to the human respiratory tract, exacerbating respiratory infections and asthma, and potentially leading to chronic lung...
-
Feature Weighted Attention-Bidirectional Long Short Term Memory Model for Change Detection in Remote Sensing Images
PublikacjaIn remote sensing images, change detection (CD) is required in many applications, such as: resource management, urban expansion research, land management, and disaster assessment. Various deep learning-based methods were applied to satellite image analysis for change detection, yet many of them have limitations, including the overfitting problem. This research proposes the Feature Weighted Attention (FWA) in Bidirectional Long...
-
Audio Feature Analysis for Precise Vocalic Segments Classification in English
PublikacjaAn approach to identifying the most meaningful Mel-Frequency Cepstral Coefficients representing selected allophones and vocalic segments for their classification is presented in the paper. For this purpose, experiments were carried out using algorithms such as Principal Component Analysis, Feature Importance, and Recursive Parameter Elimination. The data used were recordings made within the ALOFON corpus containing audio signal...
-
A Proposed Soft Computing Model for Ultimate Strength Estimation of FRP-Confined Concrete Cylinders
PublikacjaIn this paper, the feed-forward backpropagation neural network (FFBPNN) is used to propose a new formulation for predicting the compressive strength of fiber-reinforced polymer (FRP)-confined concrete cylinders. A set of experimental data has been considered in the analysis. The data include information about the dimensions of the concrete cylinders (diameter, length) and the total thickness of FRP layers, unconfined ultimate concrete...
-
Predicting the peak structural displacement preventing pounding of buildings during earthquakes
PublikacjaThe aim of the present paper is to verify the effectiveness of the artificial neural network (ANN) in predicting the peak lateral displacement of multi-story building during earthquakes, based on the peak ground acceleration (PGA) and building parameters. For the purpose of the study, the lumped-mass multi-degree-of-freedom structural model and different earthquake records have been considered. Firstly, values of stories mass and...
-
Smart Approach for Glioma Segmentation in Magnetic Resonance Imaging using Modified Convolutional Network Architecture (U-NET)
PublikacjaSegmentation of a brain tumor from magnetic resonance multimodal images is a challenging task in the field of medical imaging. The vast diversity in potential target regions, appearance and multifarious intensity threshold levels of various tumor types are few of the major factors that affect segmentation results. An accurate diagnosis and its treatment demand strict delineation of the tumor affected tissues. Herein, we focus on...
-
EVALUATION OF LIQUID-GAS FLOW IN PIPELINE USING GAMMA-RAY ABSORPTION TECHNIQUE AND ADVANCED SIGNAL PROCESSING
PublikacjaLiquid-gas flows in pipelines appear in many industrial processes, e.g. in the nuclear, mining, and oil industry. The gamma-absorption technique is one of the methods that can be successfully applied to study such flows. This paper presents the use of thegamma-absorption method to determine the water-air flow parameters in a horizontal pipeline. Three flow types were studied in this work: plug, transitional plug-bubble,...
-
PTD4 Peptide Increases Neural Viability in an In Vitro Model of Acute Ischemic Stroke
PublikacjaIschemic stroke is a disturbance in cerebral blood flow caused by brain tissue ischemia and hypoxia. We optimized a multifactorial in vitro model of acute ischemic stroke using rat primary neural cultures. This model was exploited to investigate the pro-viable activity of cell-penetrating peptides: arginine-rich Tat(49–57)-NH2 (R49KKRRQRRR57-amide) and its less basic analogue, PTD4 (Y47ARAAARQARA57-amide). Our model included glucose...
-
Topological-numerical analysis of a two-dimensional discrete neuron model
PublikacjaWe conduct computer-assisted analysis of a two-dimensional model of a neuron introduced by Chialvo in 1995 [Chaos, Solitons Fractals 5, 461–479]. We apply the method of rigorous analysis of global dynamics based on a set-oriented topological approach, introduced by Arai et al. in 2009 [SIAM J. Appl. Dyn. Syst. 8, 757–789] and improved and expanded afterward. Additionally, we introduce a new algorithm to analyze the return times...
-
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
PublikacjaThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...
-
Intracranial hemorrhage detection in 3D computed tomography images using a bi-directional long short-term memory network-based modified genetic algorithm
PublikacjaIntroduction: Intracranial hemorrhage detection in 3D Computed Tomography (CT) brain images has gained more attention in the research community. The major issue to deal with the 3D CT brain images is scarce and hard to obtain the labelled data with better recognition results. Methods: To overcome the aforementioned problem, a new model has been implemented in this research manuscript. After acquiring the images from the Radiological...
-
Melanoma skin cancer detection using mask-RCNN with modified GRU model
PublikacjaIntroduction: Melanoma Skin Cancer (MSC) is a type of cancer in the human body; therefore, early disease diagnosis is essential for reducing the mortality rate. However, dermoscopic image analysis poses challenges due to factors such as color illumination, light reflections, and the varying sizes and shapes of lesions. To overcome these challenges, an automated framework is proposed in this manuscript. Methods: Initially, dermoscopic...