Wyniki wyszukiwania dla: neural network architecture search
-
Characterizing the Scalability of Graph Convolutional Networks on Intel® PIUMA
PublikacjaLarge-scale Graph Convolutional Network (GCN) inference on traditional CPU/GPU systems is challenging due to a large memory footprint, sparse computational patterns, and irregular memory accesses with poor locality. Intel’s Programmable Integrated Unffied Memory Architecture (PIUMA) is designed to address these challenges for graph analytics. In this paper, a detailed characterization of GCNs is presented using the Open-Graph Benchmark...
-
Low-Power WSN System for Honey Bee Monitoring
PublikacjaThe paper presents a universal low-power system for biosensory data acquisition in scope of bees monitoring. We describe the architecture of the system, energy-saving components as well as we discuss the selection of used sensors. The work focuses on energy optimization in a scope of wireless communication. A custom protocol was implemented, which is the basis for presented energy-efficient devices. Data exchange process during...
-
Integracja bezprzewodowych heterogenicznych sieci IP dla poprawy efektywności transmisji danych na morzu
PublikacjaWraz ze wzrostem istotności środowiska morskiego w naszym codziennym życiu np. w postaci zwiększonego wolumenu transportu realizowanego drogą morską. czy zintensyfikowanych prac dotyczących obserwacji i monitoringu środowiska morskiego, wzrasta również potrzeba opracowania efektywnych systemów komunikacyjnych dedykowanych dla tego środowiska. Heterogeniczne systemy łączności bezprzewodowej integrowane na poziomie warstwy sieciowej...
-
GPU Power Capping for Energy-Performance Trade-Offs in Training of Deep Convolutional Neural Networks for Image Recognition
PublikacjaIn the paper we present performance-energy trade-off investigation of training Deep Convolutional Neural Networks for image recognition. Several representative and widely adopted network models, such as Alexnet, VGG-19, Inception V3, Inception V4, Resnet50 and Resnet152 were tested using systems with Nvidia Quadro RTX 6000 as well as Nvidia V100 GPUs. Using GPU power capping we found other than default configurations minimizing...
-
Diagnosis of damages in family buildings using neural networks
PublikacjaThe article concerns a problem of damages in family buildings, which result from traffic-induced vibrations. These vibrations arise from various causes and their size is influenced by many factors. The most important is the type of a road, type and weight of vehicles that run on the road, type and condition of the road surface, the distance from the house to the source of vibrations and many others which should be taken into account....
-
Sathwik Prathapagiri
OsobySathwik was born in 2000. In 2022, he completed his Master’s of Science in Biological Sciences and Bachelor’s of Engineering in Chemical Engineering in an integrated dual degree program from Birla Institute Of Technology And Science, Pilani, India. During his final year, he worked as a research intern under Dr Giri P Krishnan at Bazhenov lab, University of California San Diego school of medicine to pursue his Master’s Thesis on...
-
Poszukiwanie układów obiektów architektonicznych zgodnych z uwarunkowaniami przyrodniczymi Pojezierza Kaszubskiego. Studium autorskie
PublikacjaStudium docelowych form zamieszkiwania oparto o obserwacje przyrodnicze i próbę ich kulturowej transpozycji poprzez działania artystyczne. Metaforyczne wyobrażenia form zamieszkiwania prezentowane w wielu wariantach ukazują jej adaptowalność do różnorodnych, unikalnych uwarunkowań przyrodniczych. Kontekst stanowi zarówno inspirację jak i zadanie problemowe, na które odpowiedzią jest konkretna forma układu, spasowana do swojego...
-
An integrated e-learning services management system providing HD videoconferencing and CAA services
PublikacjaIn this paper we present a novel e-learning services management system, designed to provide highly modifiable platform for various e-learning tools, able to fulfill its function in any network connectivity conditions (including no connectivity scenario). The system can scale from very simple setup (adequate for servicing a single exercise) to a large, distributed solution fit to support an enterprise. Strictly modular architecture...
-
Wykorzystanie sztucznych sieci neuronowych do wykrywania i rozpoznawania tablic rejestracyjnych na zdjęciach pojazdów
PublikacjaW artykule przedstawiono koncepcję algorytmu wykrywania i rozpoznawania tablic rejestracyjnych (AWiRTR) na obrazach cyfrowych pojazdów. Detekcja i lokalizacja tablic rejestracyjnych oraz wyodrębnienie z obrazu tablicy rejestracyjnej poszczególnych znaków odbywa się z wykorzystaniem podstawowych technik przetwarzania obrazu (przekształcenia morfologiczne, wykrywanie krawędzi) jak i podstawowych danych statystycznych obiektów wykrytych...
-
Fast Machine-Learning-Enabled Size Reduction of Microwave Components Using Response Features
PublikacjaAchieving compact size has emerged as a key consideration in modern microwave design. While structural miniaturization can be accomplished through judicious circuit architecture selection, precise parameter tuning is equally vital to minimize physical dimensions while meeting stringent performance requirements for electrical characteristics. Due to the intricate nature of compact structures, global optimization is recommended,...
-
Versatile Unsupervised Design of Antennas Using Flexible Parameterization and Computational Intelligence Methods
PublikacjaDeveloping contemporary antennas is a challenging endeavor that requires considerable engineering insight. The most laborious stage is to devise an antenna architecture that delivers the required functionalities, e.g., multiband operation. Iterative by nature (hands-on topology modifications, parametric studies, trial-and-error geometry selection), it typically takes many weeks and requires considerable engagement from a human...
-
Economical methods for measuring road surface roughness
PublikacjaTwo low-cost methods of estimating the road surface condition are presented in the paper, the first one based on the use of accelerometers and the other on the analysis of images acquired from cameras installed in a vehicle. In the first method, miniature positioning and accelerometer sensors are used for evaluation of the road surface roughness. The device designed for installation in vehicles is composed of a GPS receiver and...
-
High performance super-twisting sliding mode control for a maritime autonomous surface ship (MASS) using ADP-Based adaptive gains and time delay estimation
PublikacjaThis research addresses two kinds of problems related to optimal trajectory tracking of a Maritime Autonomous Surface Ship (MASS): those caused by the time-varying external disturbances including winds, waves and ocean currents as well as those resulting from inherent dynamical uncertainties. As the paper shows, an accurate and robust optimal controller can successfully deal with both issues. An improved Optimal Adaptive Super-Twisting...
-
Explainable machine learning for diffraction patterns
PublikacjaSerial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify...
-
Field Calibration of Low-Cost Particulate Matter Sensors Using Artificial Neural Networks and Affine Response Correction
PublikacjaDue to detrimental effects of atmospheric particulate matter (PM), its accurate monitoring is of paramount importance, especially in densely populated urban areas. However, precise measurement of PM levels requires expensive and sophisticated equipment. Although low-cost alternatives are gaining popularity, their reliability is questionable, attributed to sensitivity to environmental conditions, inherent instability, and manufacturing...
-
CNN-CLFFA: Support Mobile Edge Computing in Transportation Cyber Physical System
PublikacjaIn the present scenario, the transportation Cyber Physical System (CPS) improves the reliability and efficiency of the transportation systems by enhancing the interactions between the physical and cyber systems. With the provision of better storage ability and enhanced computing, cloud computing extends transportation CPS in Mobile Edge Computing (MEC). By inspecting the existing literatures, the cloud computing cannot fulfill...
-
Detecting Lombard Speech Using Deep Learning Approach
PublikacjaRobust Lombard speech-in-noise detecting is challenging. This study proposes a strategy to detect Lombard speech using a machine learning approach for applications such as public address systems that work in near real time. The paper starts with the background concerning the Lombard effect. Then, assumptions of the work performed for Lombard speech detection are outlined. The framework proposed combines convolutional neural networks...
-
Evaluation of aspiration problems in L2 English pronunciation employing machine learning
PublikacjaThe approach proposed in this study includes methods specifically dedicated to the detection of allophonic variation in English. This study aims to find an efficient method for automatic evaluation of aspiration in the case of Polish second-language (L2) English speakers’ pronunciation when whole words are analyzed instead of particular allophones extracted from words. Sample words including aspirated and unaspirated allophones...
-
High performance super-twisting sliding mode control for a maritime autonomous surface ship (MASS) using ADP-Based adaptive gains and time delay estimation
PublikacjaThis research addresses two kinds of problems related to optimal trajectory tracking of a Maritime Autonomous Surface Ship (MASS): those caused by the time-varying external disturbances including winds, waves and ocean currents as well as those resulting from inherent dynamical uncertainties. As the paper shows, an accurate and robust optimal controller can successfully deal with both issues. An improved Optimal Adaptive Super-Twisting...
-
Real-Time Facial Features Detection from Low Resolution Thermal Images with Deep Classification Models
PublikacjaDeep networks have already shown a spectacular success for object classification and detection for various applications from everyday use cases to advanced medical problems. The main advantage of the classification models over the detection models is less time and effort needed for dataset preparation, because classification networks do not require bounding box annotations, but labels at the image level only. Yet, after passing...
-
The Optimal Location of Ground-Based GNSS Augmentation Transceivers
PublikacjaModern Global Navigation Satellite Systems (GNSS) allow for positioning with accuracies ranging from tens of meters to single millimeters depending on user requirements and available equipment. A major disadvantage of these systems is their unavailability or limited availability when the sky is obstructed. One solution is to use additional range measurements from ground-based nodes located in the vicinity of the receiver. The highest...
-
On-line Search in Two-Dimensional Environment
PublikacjaWe consider the following on-line pursuit-evasion problem. A team of mobile agents called searchers starts at an arbitrary node of an unknown network. Their goal is to execute a search strategy that guarantees capturing a fast and invisible intruder regardless of its movements using as few searchers as possible. We require that the strategy is connected and monotone, that is, at each point of the execution the part of the graph...
-
Super-resolved Thermal Imagery for High-accuracy Facial Areas Detection and Analysis
PublikacjaIn this study, we evaluate various Convolutional Neural Networks based Super-Resolution (SR) models to improve facial areas detection in thermal images. In particular, we analyze the influence of selected spatiotemporal properties of thermal image sequences on detection accuracy. For this purpose, a thermal face database was acquired for 40 volunteers. Contrary to most of existing thermal databases of faces, we publish our dataset...
-
Data fusion of sparse, heterogeneous, and mobile sensor devices using adaptive distance attention
PublikacjaIn environmental science, where information from sensor devices are sparse, data fusion for mapping purposes is often based on geostatistical approaches. We propose a methodology called adaptive distance attention that enables us to fuse sparse, heterogeneous, and mobile sensor devices and predict values at locations with no previous measurement. The approach allows for automatically weighting the measurements according to a priori...
-
Assessing the attractiveness of human face based on machine learning
PublikacjaThe attractiveness of the face plays an important role in everyday life, especially in the modern world where social media and the Internet surround us. In this study, an attempt to assess the attractiveness of a face by machine learning is shown. Attractiveness is determined by three deep models whose sum of predictions is the final score. Two annotated datasets available in the literature are employed for training and testing...
-
How Integration of a Brain-Machine Interface and Obstacle Detection System Can Improve Wheelchair Control via Movement Image
PublikacjaThis study presents a human-computer interaction combined with a brain-machine interface (BMI) and obstacle detection system for remote control of a wheeled robot through movement imagery, providing a potential solution for individuals facing challenges with conventional vehicle operation. The primary focus of this work is the classification of surface EEG signals related to mental activity when envisioning movement and deep relaxation...
-
Cost-Efficient Measurement Platform and Machine-Learning-Based Sensor Calibration for Precise NO2 Pollution Monitoring
PublikacjaAir quality significantly impacts human health, the environment, and the economy. Precise real-time monitoring of air pollution is crucial for managing associated risks and developing appropriate short- and long-term measures. Nitrogen dioxide (NO2) stands as a common pollutant, with elevated levels posing risks to the human respiratory tract, exacerbating respiratory infections and asthma, and potentially leading to chronic lung...
-
Pedestrian detection in low-resolution thermal images
PublikacjaOver one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...
-
Feature Weighted Attention-Bidirectional Long Short Term Memory Model for Change Detection in Remote Sensing Images
PublikacjaIn remote sensing images, change detection (CD) is required in many applications, such as: resource management, urban expansion research, land management, and disaster assessment. Various deep learning-based methods were applied to satellite image analysis for change detection, yet many of them have limitations, including the overfitting problem. This research proposes the Feature Weighted Attention (FWA) in Bidirectional Long...
-
Audio Feature Analysis for Precise Vocalic Segments Classification in English
PublikacjaAn approach to identifying the most meaningful Mel-Frequency Cepstral Coefficients representing selected allophones and vocalic segments for their classification is presented in the paper. For this purpose, experiments were carried out using algorithms such as Principal Component Analysis, Feature Importance, and Recursive Parameter Elimination. The data used were recordings made within the ALOFON corpus containing audio signal...
-
A Proposed Soft Computing Model for Ultimate Strength Estimation of FRP-Confined Concrete Cylinders
PublikacjaIn this paper, the feed-forward backpropagation neural network (FFBPNN) is used to propose a new formulation for predicting the compressive strength of fiber-reinforced polymer (FRP)-confined concrete cylinders. A set of experimental data has been considered in the analysis. The data include information about the dimensions of the concrete cylinders (diameter, length) and the total thickness of FRP layers, unconfined ultimate concrete...
-
Predicting the peak structural displacement preventing pounding of buildings during earthquakes
PublikacjaThe aim of the present paper is to verify the effectiveness of the artificial neural network (ANN) in predicting the peak lateral displacement of multi-story building during earthquakes, based on the peak ground acceleration (PGA) and building parameters. For the purpose of the study, the lumped-mass multi-degree-of-freedom structural model and different earthquake records have been considered. Firstly, values of stories mass and...
-
EVALUATION OF LIQUID-GAS FLOW IN PIPELINE USING GAMMA-RAY ABSORPTION TECHNIQUE AND ADVANCED SIGNAL PROCESSING
PublikacjaLiquid-gas flows in pipelines appear in many industrial processes, e.g. in the nuclear, mining, and oil industry. The gamma-absorption technique is one of the methods that can be successfully applied to study such flows. This paper presents the use of thegamma-absorption method to determine the water-air flow parameters in a horizontal pipeline. Three flow types were studied in this work: plug, transitional plug-bubble,...
-
ESPAR Antenna-Based WSN Node With DoA Estimation Capability
PublikacjaIn this paper, we present a low-cost energy-efficient electronically steerable parasitic array radiator (ESPAR) antenna-based wireless sensor network (WSN) node designed for IEEE 802.15.4 standard that is capable of performing direction of arrival (DoA) estimation in real-life outdoor environments. To this end, we propose the WSN node architecture, design and realization that utilizes NXP JN5168 radio frequency (RF) wireless transceiver...
-
Synteza układu sterowania statkiem morskim dynamicznie pozycjonowanym w warunkach niepewności
PublikacjaNiniejsza monografia obejmuje zagadnienia związane z syntezą układu dynamicznego pozycjonowania statku w środowisku morskim z zastosowaniem wybranych nieliniowych metod sterowania. W ramach pracy autorka rozważała struktury sterowania z zastosowaniem wektorowej adaptacyjnej metody backstep oraz metod jej pokrewnych, takich jak regulatory MSS (ang. multiple surface sliding), DSC (ang. dynamic surface control), NB (ang. neural backstepping)....
-
Dual-Activity Fluoroquinolone-Transportan 10 Conjugates offer alternative Leukemia therapy during Hematopoietic Cell Transplantation
PublikacjaHematopoietic cell transplantation (HCT) is often considered a last resort leukemia treatment, fraught with limited success due to microbial infections, a leading cause of mortality in leukemia patients. To address this critical issue, we explored a novel approach by synthesizing antileukemic agents containing antibacterial substances. This innovative strategy involves conjugating fluoroquinolone antibiotics, such as ciprofloxacin...
-
Adaptacyjny system oświetlania dróg oraz inteligentnych miast
PublikacjaPrzedmiotem rozprawy jest zbadanie praktycznej możliwości wykrywania w czasie rzeczywistym anomalii w systemie oświetlenia drogowego w oparciu o analizę danych ze inteligentnych liczników energii. Zastosowanie inteligentnych liczników energii elektrycznej (Smart Meter) w systemach oświetlenia drogowego stwarza nowe możliwości w zakresie automatycznej diagnostyki takich niepożądanych zjawisk jak awarie lamp, odstępstwa od harmonogramu...
-
Static in vitro digestion model adapted to the general older adult population: an INFOGEST international consensus
PublikacjaUnderstanding the mechanisms of food digestion is of paramount importance to determine the effect foods have on human health. Significant knowledge on the fate of food during digestion has been generated in healthy adults due to the development of physiologically-relevant in vitro digestion models. However, it appears that the performance of the oro-gastrointestinal tract is affected by ageing and that a model simulating the digestive...
-
Heavy Duty Vehicle Fuel Consumption Modelling Based on Exploitation Data by Using Artificial Neural Networks
PublikacjaOne of the ways to improve the fuel economy of heavy duty trucks is to operate the combustion engine in its most efficient operating points. To do that, a mathematical model of the engine is required, which shows the relations between engine speed, torque and fuel consumption in transient states. In this paper, easy accessible exploitation data collected via CAN bus of the heavy duty truck were used to obtain a model of a diesel...
-
Computational Complexity and Its Influence on Predictive Capabilities of Machine Learning Models for Concrete Mix Design
PublikacjaThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering...
-
Melanoma skin cancer detection using mask-RCNN with modified GRU model
PublikacjaIntroduction: Melanoma Skin Cancer (MSC) is a type of cancer in the human body; therefore, early disease diagnosis is essential for reducing the mortality rate. However, dermoscopic image analysis poses challenges due to factors such as color illumination, light reflections, and the varying sizes and shapes of lesions. To overcome these challenges, an automated framework is proposed in this manuscript. Methods: Initially, dermoscopic...
-
Balanced Spider Monkey Optimization with Bi-LSTM for Sustainable Air Quality Prediction
PublikacjaA reliable air quality prediction model is required for pollution control, human health monitoring, and sustainability. The existing air quality prediction models lack efficiency due to overfitting in prediction model and local optima trap in feature selection. This study proposes the Balanced Spider Monkey Optimization (BSMO) technique for effective feature selection to overcome the local optima trap and overfitting problems....
-
An ANN-Based Approach for Prediction of Sufficient Seismic Gap between Adjacent Buildings Prone to Earthquake-Induced Pounding
PublikacjaEarthquake-induced structural pounding may cause major damages to structures, and therefore it should be prevented. This study is focused on using an artificial neural network (ANN) method to determine the sufficient seismic gap in order to avoid collisions between two adjacent buildings during seismic excitations. Six lumped mass models of structures with a different number of stories (from one to six) have been considered in...
-
Employing Subjective Tests and Deep Learning for Discovering the Relationship between Personality Types and Preferred Music Genres
PublikacjaThe purpose of this research is two-fold: (a) to explore the relationship between the listeners’ personality trait, i.e., extraverts and introverts and their preferred music genres, and (b) to predict the personality trait of potential listeners on the basis of a musical excerpt by employing several classification algorithms. We assume that this may help match songs according to the listener’s personality in social music networks....
-
Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
PublikacjaNitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, model predictions...
-
Improving the efficiency of street lighting electrical systems
PublikacjaTo derive mathematical expressions that, using the available information, will allow forecasting the levels of electricity consumption by the city’s outdoor lighting network in the main possible scenarios for several years ahead, as well as when developing an energy-efficient smart control system for the electro-complex of lighting complex. Creating an effective intelligent outdoor lighting control system involves the use of the...
-
A Data-Driven Comparative Analysis of Machine-Learning Models for Familial Hypercholesterolemia Detection
PublikacjaThis study presents an assessment of familial hypercholesterolemia (FH) probability using different algorithms (CatBoost, XGBoost, Random Forest, SVM) and its ensembles, leveraging electronic health record data. The primary objective is to explore an enhanced method for estimating FH probability, surpassing the currently recommended Dutch Lipid Clinic Network (DLCN) Score. The models were trained using the largest Polish cohort...
-
Low-Cost Design Optimization of Microwave Passives Using Multi-Fidelity EM Simulations and Selective Broyden Updates
PublikacjaGeometry parameters of contemporary microwave passives have to be carefully tuned in the final stages of their design process to ensure the best possible performance. For reliability reasons, the tuning has to be to be carried out at the level of full-wave electromagnetic (EM) simulations. This is because traditional modeling methods are incapable of quantifying certain phenomena that may affect operation and performance of these...
-
Web-based real-time simulation system
PublikacjaThe paper presents the development of a simulation system composed of a real-time plant simulator with real-time controller included in the software-in-the-loop structure using web-based communication. The client-server architecture build in a TCP/IP network environment was introduced, where the server is a computing unit for real-time high temporal resolution plant simulation (and optionally also as controllers' platform) and...
-
IoT Based Intelligent Pest Management System for Precision Agriculture
PublikacjaDespite seemingly inexorable imminent risks of food insecurity that hang over the world, especially in developing countries like Pakistan where traditional agricultural methods are being followed, there still are opportunities created by technology that can help us steer clear of food crisis threats in upcoming years. At present, the agricultural sector worldwide is rapidly pacing towards technology-driven Precision Agriculture...