Filtry
wszystkich: 2474
-
Katalog
- Publikacje 2002 wyników po odfiltrowaniu
- Czasopisma 107 wyników po odfiltrowaniu
- Konferencje 103 wyników po odfiltrowaniu
- Wydawnictwa 1 wyników po odfiltrowaniu
- Osoby 61 wyników po odfiltrowaniu
- Projekty 6 wyników po odfiltrowaniu
- Kursy Online 20 wyników po odfiltrowaniu
- Wydarzenia 3 wyników po odfiltrowaniu
- Dane Badawcze 171 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: NETWORK
-
Influence of User Mobility and Antenna Placement on System Loss in B2B Networks
PublikacjaIn this paper, the influence of user mobility and on-body antenna placement on system loss in body-to-body communications in indoor and outdoor environments and different mobility scenarios is studied, based on system loss measurements at 2.45 GHz. The novelty of this work lies on the proposal of a classification model to characterise the effect of user mobility and path visibility on system loss, allowing to identify the best...
-
A Novel Bitrate Adaptation Method for Heterogeneous Wireless Body Area Networks
PublikacjaIn the article, a novel bitrate adaptation method for data streams allocation in heterogeneous Wireless Body Area Networks (WBANs) is presented. The efficiency of the proposed algorithm was compared with other known algorithms of data stream allocation using computer simulation. A dedicated simulator has been developed using results of measurements in the real environment. The usage of the proposed adaptive data streams allocation...
-
An efficient approach to optimization of semi‐stable routing in multicommodity flow networks
Publikacja -
Automated Diagnostics of Current Pick-Up Disturbances in Electric Traction Networks
PublikacjaThe present work defines the basic causes of bow disturbances of current pick-up, sets a task of establishing a system of automated control of bow disturbances at feeder zones of electric traction networks, proposes structural variants of the technical system implementation, describes the algorithm of detection of bow disturbances of current pick-up.
-
Study of data scheduling methods in the WiMAX Mobile metropolitan area networks
PublikacjaThe paper discusses basic assumptions of the WiMAX Mobile system. It also presents and analyses the results of simulation tests run for selected data scheduling methods and subcarrier allocation. Based on the test results, the authors have prepared a comparative analysis of two popular data scheduling methods, i.e. WRR and PF, and their own method CDFQ which uses information about the current channel situation for the queuing processes...
-
Fourth International Workshop on Reliable Networks Design and Modeling (RNDM 2012)
Publikacjaartykuł sprawozdawczy z konferencji
-
Performance analysis of mobility protocols and handover algorithms for IP-based networks
PublikacjaA rapid growth of IP-based networks and services has created the vast collection of resources and functionality available to users by means of a universal method of access - an IP protocol. At the same time, advances in design of mobile electronic devices have allowed them to reach utility level comparable to stationary, desktop computers, while still retaining their mobility advantage. Following this trend multiple extensions...
-
Use of Neural Networks in Diagnostics of Rolling-Element Bearing of the Induction Motor
PublikacjaBearing defect is statistically the most frequent cause of an induction motor fault. The research described in the paper utilized the phenomenon of the current change in the induction motor with bearing defect. Methods based on the analysis of the supplying current are particularly useful when it is impossible to install diagnostic devices directly on the motor. The presented method of rolling-element bearing diagnostics used indirect...
-
An Off-Body Channel Model for Body Area Networks in Indoor Environments
PublikacjaThis paper presents an off-body channel model for body area networks (BANs) in indoor environments. The proposed model, which is based on both simulations and measurements in a realistic environment, consists of three components: mean path loss, body shadowing, and multipath fading. Seven scenarios in a realistic indoor office environment containing typical scatterers have been measured: five were static (three standing and two...
-
A Novel Bitrate Adaptation Method for Heterogeneous Wireless Body Area Networks
PublikacjaIn the article, a novel bitrate adaptation method for data streams allocation in heterogeneous Wireless Body Area Networks (WBANs) is presented. The efficiency of the proposed algorithm was compared with other known algorithms of data stream allocation using computer simulation. A dedicated simulator has been developed using results of measurements in the real environment. The usage of the proposed adaptive data streams allocation...
-
Deep neural networks approach to skin lesions classification — A comparative analysis
PublikacjaThe paper presents the results of research on the use of Deep Neural Networks (DNN) for automatic classification of the skin lesions. The authors have focused on the most effective kind of DNNs for image processing, namely Convolutional Neural Networks (CNN). In particular, three kinds of CNN were analyzed: VGG19, Residual Networks (ResNet) and the hybrid of VGG19 CNN with the Support Vector Machine (SVM). The research was carried...
-
3rd International Workshop on Reliable Networks Design and Modeling (RNDM 2011)
Publikacjaartykuł sprawozdawczy z konferencji
-
Enhancing Performance of Switched Parasitic Antenna for Localization in Wireless Sensor Networks
PublikacjaThis paper presents an Electronically Steerable Parasitic Array Radiator (ESPAR) antenna with enhanced performance of estimating the incoming signal direction. Designed antenna is dedicated for 2.4 GHz ISM applications with emphasis on Wireless Sensor Networks (WSN). The limitations of the existing design approach are illustrated, as well as perspectives and challenges of the proposed solution in relation to the localization in...
-
THE REPRESENTATION PROBLEM FOR A DIFFUSION EQUATION AND FRACTAL R-L LADDER NETWORKS
PublikacjaThe representation problem is to prove that a discretization in space of the Fourier transform of a diffusion equation with a constant diffusion coefficient can be realized explicitly by an infinite fractal R-L ladder networks. We prove a rigidity theorem: a solution to the representation problem exists if and only if the space discretization is a geometric space scale and the fractal ladder networks is a Oustaloup one. In this...
-
Artificial Neural Networks in Forecasting the Consumer Bankruptcy Risk with Innovative Ratios
PublikacjaThis study aims to develop nine different consumer bankruptcy forecasting models with the help of three types of artificial neural networks and to verify the usefulness of new, innovative ratios for implementation in personal finance. A learning sample comprising 200 consumers, and a testing sample of 500 non-bankrupt and 500 bankrupt consumers from Poland are used. The author employed three research approaches to using the entry...
-
The concept of application of artificial neural networks for cultivation controlof cartilages in bioreactors.
PublikacjaNowym elementem niniejszej pracy jest omówienie problemów związanych z możliwością sterowania parametrami hydrodynamicznymi hodowanej w bioreaktorze chrząstki stawowej przy wykorzystaniu sztucznych sieci neuronowych. Przedstawiona została architektura strategii sterowania hodowlą tkanki z zastosowaniem tych sieci.
-
Musical phrase representation and recognition by means of neural networks and rough sets.
PublikacjaW artykule przedstawiono podstawowe definicje dotyczące frazy muzycznej. W eksperymentach posłużono się zapisem parametrycznym. W celu wzmocnienia procesu rozpoznawania wykorzystano kodowanie entropijne muzyki. W eksperymentach klasyfikacji oparto się o sztuczne sieci neuronowe i metodę zbiorów przybliżonych. Słowa kluczowe: fraza muzyczna, klasyfikacja, sztuczne sieci neuronowe, metoda zbiorów przybliżonych
-
Processing of musical data employing rough sets and artificial neural networks
PublikacjaArtykuł opisuje założenia systemu automatycznej identyfikacji muzyki i dźwięków muzycznych. Dokonano przeglądu standardu MPEG-7, ze szczególnym naciskiem na parametry opisowe dźwięku. Przedyskutowano problemy analizy danych audio, związane z zastosowaniami wykorzystującymi MPEG-7. W oparciu o eksperymenty przedstawiono efektywność deskryptorów niskiego poziomu w automatycznym rozpoznawaniu dźwięków instrumentów muzycznych. Przedyskutowano...
-
Comparison of effectiveness of musical sound separation algorithms employing neural networks.
PublikacjaNiniejszy referat przedstawia kilka algorytmów służących do separacji dźwięków instrumentów muzycznych. Zaproponowane podejście do dekompozycji miksów dźwiękowych opiera się na założeniu, że wysokość dźwięków w miksie jest znana, tzn. wejściem dla algorytmów jest przebieg zmian wysokości dźwięków składowych miksu. Proces estymacji fazy i amplitudy składowych harmonicznych wykorzystuje dopasowywanie zespolonych przebiegów harmonicznych...
-
Topology improvements in scale-free networks when assuring security and survivability
PublikacjaW artykule zaproponowano heurystyczny algorytm iteracyjny (NEA) kontrolowanego rozrostu sieci, zmniejszający stopień jej bezskalowości. Pokazano, że odpowiednia kontrola rozrostu sieci, prowadzi do uzyskania sieci o topologii zbliżonej do regularnej, a więc w duzym stopniu odpornej na celowe działania niszczące - ataki. Właściwości algorytmu zostały przebadane przy pomocy dedykowanego symulatora dla reprezentatywnej próby inicjalnych...
-
Processing of musical data employing rough sets and artificial neural networks
PublikacjaArtykuł opisuje założenia systemu automatycznej identyfikacji muzyki i dźwięków muzycznych. Dokonano przeglądu standardu MPEG-7, ze szczególnym naciskiem na parametry opisowe dźwięku. Przedyskutowano problemy analizy danych audio, związane z zastosowaniami wykorzystującymi MPEG-7. W oparciu o eksperymenty przedstawiono efektywność deskryptorów niskiego poziomu w automatycznym rozpoznawaniu dźwięków instrumentów muzycznych. Przedyskutowano...
-
Estimation of musical sound separation algorithm effectiveness employing neural networks.
PublikacjaŚlepa separacja dźwięków sygnałów muzycznych zawartych w zmiksowanym materiale jest trudnym zadaniem. Jest to spowodowane tym, że dźwięki znajdujące się w relacjach harmonicznych mogą zawierać kolidujące składowe sinusoidalne (składowe harmoniczne). Ewaluacja wyników separacji jest również problematyczna, gdyż analiza błędu energetycznego często nie odzwierciedla subiektywnej jakości odseparowanych sygnałów. W tej publikacji zostały...
-
Diffusion equations with spatially dependent coefficients and fractal Cauer-type networks
PublikacjaIn this article, we formulate and solve the representation problem for diffusion equations: giving a discretization of the Laplace transform of a diffusion equation under a space discretization over a space scale determined by an increment h > 0, can we construct a continuous in h family of Cauer ladder networks whose constitutive equations match for all h > 0 the discretization. It is proved that for a finite differences discretization...
-
Optimizing Construction Engineering Management Using Metaheuristic Methods and Bayesian Networks
PublikacjaThe construction of buildings invariably involves time and costs, and disruptions impact ongoing construction projects. Crisis situations in management strategies, structural confusion, and finan-cial miscalculations often arise due to misguided decision-making. This article proposes a method that combines the learning of Bayesian Networks and heuristic techniques to optimize deci-sion-making processes in construction scheduling....
-
Adjusted SpikeProp algorithm for recurrent spiking neural networks with LIF neurons
PublikacjaA problem related to the development of a supervised learning method for recurrent spiking neural networks is addressed in the paper. The widely used Leaky-Integrate-and-Fire model has been adopted as a spike neuron model. The proposed method is based on a known SpikeProp algorithm. In detail, the developed method enables gradient descent learning of recurrent or multi-layer feedforward spiking neural networks. The research included...
-
System Loss Model for Body-to-Body Networks in Indoor and Outdoor Environments
PublikacjaA system loss model for body-to-body networks in indoor and outdoor environments is proposed in this paper, based on measurements taken at 2.45 GHz. The influence of the type of environment, antenna visibility and user mobility on model parameters has been investigated. A significant impact of mutual antennas’ placement and their visibility is shown. The proposed model fits well to empirical data, with the average root mean square...
-
Modeling of Surface Roughness in Honing Processes by UsingFuzzy Artificial Neural Networks
PublikacjaHoning processes are abrasive machining processes which are commonly employed to improve the surface of manufactured parts such as hydraulic or combustion engine cylinders. These processes can be employed to obtain a cross-hatched pattern on the internal surfaces of cylinders. In this present study, fuzzy artificial neural networks are employed for modeling surface roughness parameters obtained in finishing honing operations. As...
-
Self-healing ATM networks based on preplanned restoration of virtual paths
PublikacjaW pracy omówiono klasyfikację metod odtwarzania usług w samonaprawialnych sieciach ATM opartych na ścieżkach wirtualnych i o topologii kratkowej. Przedstawiono model z zaplanowanymi z góry ścieżkami zabezpieczającymi i wyniki badań przykładowej sieci w Polsce.
-
THE USE OF GNSS GEODETIC NETWORKS ON THE APPROACH TO THE PORTS � GULF OF GDANSK STUDY
Publikacja -
Heavy duty vehicle fuel consumption modelling using artificial neural networks
PublikacjaIn this paper an artificial neural network (ANN) approach to modelling fuel consumption of heavy duty vehicles is presented. The proposed method uses easy accessible data collected via CAN bus of the truck. As a benchmark a conventional method, which is based on polynomial regression model, is used. The fuel consumption is measured in two different tests, performed by using a unique test bench to apply the load to the engine. Firstly,...
-
Methods for physical impairment constrained routing with selected protection in all-optical networks
PublikacjaIn this paper, we investigate the problem of survivable all-optical routing in WDM networks with physical impairments. One of the recent key issues in survivable optical network design refers to maximization of the ratio of routeable demands while keeping the overall network cost low. In WDM networks, this goal can be achieved by routing as many demands in all-optical way as possible. Based on the latest technical trends driven...
-
Integrated Control in High-Speed Networks Using Constrained Model Predictive Control
PublikacjaThis paper studies congestion control in high-speed communication networks using Model Predictive Control (MPC). Network traffic is assumed to consist of best-effort and priority traffic sources. An integrated controller consisting of two control parts is designed. The controller calculates the capacity for priority sources and the input rate of best-effort sources. MPC is desirable as it can take into account the constraints on...
-
Deep Learning-Based LOS and NLOS Identification in Wireless Body Area Networks
PublikacjaIn this article, the usage of deep learning (DL) in ultra-wideband (UWB) Wireless Body Area Networks (WBANs) is presented. The developed approach, using channel impulse response, allows higher efficiency in identifying the direct visibility conditions between nodes in off-body communication with comparison to the methods described in the literature. The effectiveness of the proposed deep feedforward neural network was checked on...
-
ON DYNAMICS OF ELASTIC NETWORKS WITH RIGID JUNCTIONS WITHIN NONLINEAR MICRO-POLAR ELASTICITY
PublikacjaWithin the nonlinear micropolar elasticity we discuss effective dynamic (kinetic) properties of elastic networks with rigid joints. The model of a hyperelastic micropolar continuum is based on two constitutive relations, i.e., static and kinetic ones. They introduce a strain energy density and a kinetic energy density, respectively. Here we consider a three-dimensional elastic network made of three families of elastic fibers connected...
-
Connectivity Improvement in Wireless Sensor Networks Using ESPAR Antennas with Dielectric Overlays
PublikacjaThis article presents an electrically steerable parasitic array radiator (ESPAR) switched beam antenna with a dielectric overlay to miniaturize the antenna and modify the radiation pattern in the vertical plane. The antenna is intended for a gateway in a wireless sensor network (WSN) and is located on the ceiling of a room. Because the ESPAR antenna consists of an array of vertical monopoles, there is a deep minimum in the radiation...
-
Priority-enabled optimization of resource utilization in fault-tolerant optical transport networks.
PublikacjaW artykule zaproponowano nowe podejście do optymalizacji rozdziału zasobów przeżywalnych sieci rozległych, które uzależnia szybkość przywracania ciągłości połączenia od klasy usługi. Wykazano, iż proponowana metoda nie powoduje wydłużania ścieżek zabezpieczających (w przypadku usług w wymaganej wysokiej jakości obsługi) lub czyni to w sposób minimalny (dla pozostały usług). Ze względu na fakt, że zadanie znalezienia ścieżek aktywnych...
-
EURASIP Journal on Wireless Communications and Networking
Czasopisma -
Predicting the impact of traffic–induced vibrations on buildings using artificial neural networks
PublikacjaTraffic–induced vibrations may constitute a considerable load to a building, cause cracking of plaster, cracks in load–bearing elements or even a global structural collapse of the whole structure [1-4]. Vibrations measurements of real structures are costly and laborious, not justified in all cases. The aim of the paper is to create an original algorithm, to predict the negative dynamic impact on the examined residential building...
-
Fast Fading Characterization for Body Area Networks in Circular Metallic Indoor Environments
PublikacjaWith the increasing development of 5G and Body Area Network based systems being implemented in unusual environments, propagation inside metallic structures is a key aspect to characterize propagation effects inside ships and other similar environments, mostly composed of metallic walls. In this paper, indoor propagation inside circular metallic structures is addressed and fast fading statistical distributions parameters are obtained...
-
Entangled rendezvous: a possible application of Bell non-locality for mobile agents on networks
PublikacjaRendezvous is an old problem of assuring that two or more parties, initially separated, not knowing the position of each other, and not allowed to communicate, are striving to meet without pre-agreement on the meeting point. This problem has been extensively studied in classical computer science and has vivid importance to modern and future applications. Quantum non-locality, like Bell inequality violation, has shown that in many...
-
Application 2D Descriptors and Artificial Neural Networks for Beta-Glucosidase Inhibitors Screening
PublikacjaBeta-glucosidase inhibitors play important medical and biological roles. In this study, simple two-variable artificial neural network (ANN) classification models were developed for beta-glucosidase inhibitors screening. All bioassay data were obtained from the ChEMBL database. The classifiers were generated using 2D molecular descriptors and the data miner tool available in the STATISTICA package (STATISTICA Automated Neural...
-
Channel State Estimation in LTE-Based Heterogenous Networks Using Deep Learning
PublikacjaFollowing the continuous development of the information technology, the concept of dense urban networks has evolved as well. The powerful tools, like machine learning, break new ground in smart network and interface design. In this paper the concept of using deep learning for estimating the radio channel parameters of the LTE (Long Term Evolution) radio interface is presented. It was proved that the deep learning approach provides...
-
Towards bees detection on images: study of different color models for neural networks
PublikacjaThis paper presents an approach to bee detection in videostreams using a neural network classifier. We describe the motivationfor our research and the methodology of data acquisition. The maincontribution to this work is a comparison of different color models usedas an input format for a feedforward convolutional architecture appliedto bee detection. The detection process has is based on a neural...
-
A Novel Method for the Deblurring of Photogrammetric Images Using Conditional Generative Adversarial Networks
PublikacjaThe visual data acquisition from small unmanned aerial vehicles (UAVs) may encounter a situation in which blur appears on the images. Image blurring caused by camera motion during exposure significantly impacts the images interpretation quality and consequently the quality of photogrammetric products. On blurred images, it is difficult to visually locate ground control points, and the number of identified feature points decreases...
-
Physics-guided neural networks (PGNNs) to solve differential equations for spatial analysis
PublikacjaNumerous examples of physically unjustified neural networks, despite satisfactory performance, generate contradictions with logic and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage and lead to many inaccuracies in the final applications. One of the methods to justify the typical black-box model already at the training stage involves extending...
-
A Selection of Starting Points for Iterative Position Estimation Algorithms Using Feedforward Neural Networks
PublikacjaThis article proposes the use of a feedforward neural network (FNN) to select the starting point for the first iteration in well-known iterative location estimation algorithms, with the research objective of finding the minimum size of a neural network that allows iterative position estimation algorithms to converge in an example positioning network. The selected algorithms for iterative position estimation, the structure of the...
-
INFLUENCE OF A VERTEX REMOVING ON THE CONNECTED DOMINATION NUMBER – APPLICATION TO AD-HOC WIRELESS NETWORKS
PublikacjaA minimum connected dominating set (MCDS) can be used as virtual backbone in ad-hoc wireless networks for efficient routing and broadcasting tasks. To find the MCDS is an NP- complete problem even in unit disk graphs. Many suboptimal algorithms are reported in the literature to find the MCDS using local information instead to use global network knowledge, achieving an important reduction in complexity. Since a wireless network...
-
Electrical and noise responses of carbon nanotube networks enhanced by UV light for detection of organic gases (ethanol, acetone)
Dane BadawczeCarbon nanotube networks of different optical transparencies were investigated via resistance and 1/f noise measurements for detection of ethanol and acetone. The sensor resistive and noise responses were collected for dark and UV-assisted conditions, revealing the improvement in sensor sensitivity and limit of detection after applying UV light (275...
-
Distributed protection against non-cooperative node behavior in multi-hop wireless networks
PublikacjaAn important security problem in today's distributed data networks is the prevention of non-cooperative behavior i.e., attacks consisting in the modification of standard node operation to gain unfair advantage over other system nodes. Such a behavior is currently feasible in many types of computer networks whose communication protocols are designed to maximize the network performance assuming full node cooperation. Moreover, it...
-
Dynamically positioned ship steering making use of backstepping method and artificial neural networks
PublikacjaThe article discusses the issue of designing a dynamic ship positioning system making use of the adaptive vectorial backstepping method and RBF type arti cial neural networks. In the article, the backstepping controller is used to determine control laws and neural network weight adaptation laws. e arti cial neural network is applied at each time instant to approximate nonlinear functions containing parametric uncertainties....