Wyniki wyszukiwania dla: NITROGEN-DOPED GRAPHENE QUANTUM DOTS
-
Positron-electron correlation-polarization potentials for the calculation of positron collisions with atoms and molecules
PublikacjaWe present correlation-polarization potentials for the calculation of scattering cross sections of positrons with atoms and molecules. The potentials are constructed from a short-range correlation term and a long-range polarization term. For the short-range correlation term we present four different potentials that are derived from multi-component density functionals. For the long-range polarization term we employ a multi-term...
-
Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films
PublikacjaBoron doped diamond (BDD) has great potential in electrical, and electrochemical sensing applications. The growth parameters, substrates, and synthesis method play a vital role in the preparation of semiconducting BDD to metallic BDD. Doping of other elements along with boron (B) into diamond demonstrated improved efficacy of B doping and exceptional properties. In the present study, B and nitrogen (N) co-doped diamond has been...
-
Do positrons measure atomic and molecular diameters?
PublikacjaWe report on density functional calculations (DFT) of elastic integral scattering cross-sections for positron collisions with argon, krypton, nitrogen and methane. The long-range asymptotic polarization potential is described using higher-order terms going much beyond an induced dipole potential (−α / r 4) while the short-range interaction is modeled by two different forms of electron – positron correlation potential (Boroński-Nieminen...
-
Acid–Base Equilibrium and Self-Association in Relation to High Antitumor Activity of Selected Unsymmetrical Bisacridines Established by Extensive Chemometric Analysis
PublikacjaUnsymmetrical bisacridines (UAs) represent a novel class of anticancer agents previously synthesized by our group. Our recent studies have demonstrated their high antitumor potential against multiple cancer cell lines and human tumor xenografts in nude mice. At the cellular level, these compounds affected 3D cancer spheroid growth and their cellular uptake was selectively modulated by quantum dots. UAs were shown to undergo metabolic...
-
pH-Responsive Drug Delivery Nanoplatforms as Smart Carriers of Unsymmetrical Bisacridines for Targeted Cancer Therapy
PublikacjaSelective therapy and controlled drug release at an intracellular level remain key challenges for effective cancer treatment. Here, we employed folic acid (FA) as a self-navigating molecule in nanoconjugates containing quantum dots (QDs) and β-cyclodextrin (β-CD) for the delivery of antitumor unsymmetrical bisacridine compound (C-2028) to lung and prostate cancers as well as normal cells. The bisacridine derivative can form the...
-
Influence of the boron doping level on the electrochemical oxidation of raw landfill leachates: advanced pre-treatment prior to the biological nitrogen removal
PublikacjaThe electrochemical oxidative treatment of landfill leachates (LLs) containing high amounts of ammonia nitrogen and organic matter was used as a promising method, prior to biological processes, to achieve the final effluent quality that would be acceptable by current regulations. The deposited boron-doped diamond electrodes (BDDs) with different boron doping concentrations (10000, 5000 and 500 ppm of B) were applied as anodes....
-
Fluorescence of nanodiamond cocktails: pH-induced effects through interactions with comestible liquids
PublikacjaFluorescent nanodiamonds with nitrogen-vacancy centers have become important nanoscale probes for sensing and imaging. The surface chemistry of the nanodiamonds influences their emission, interactions, and quantum properties. In this work, we propose to utilize fluorescent nanodiamonds as photostable markers for investigation of comestible liquids. We prepared nanodiamond/comestibles suspensions/cocktails with a wide range of pH...
-
The luminescence study of Sr2TiO4:Sm3+ coumpounds.
Dane BadawczeA luminescent material based on the strontium orthotitanate (Sr2TiO4) matrix doped with 1% of a mole of samarium was obtained using the typical solid-state synthesis method under a neutral atmosphere of nitrogen. The sample was investigated using powder X-ray diffraction (XRD) and several luminescence techniques to study the phase composition, luminescence...
-
Mechanism of hopping conduction in Be–Fe–Al–Te–O semiconducting glasses and glass–ceramics
PublikacjaElectrical properties of beryllium-alumino-tellurite glasses and glass–ceramics doped with iron ions were studied using impedance spectroscopy. The conductivity was measured over a wide frequency range from 10 mHz to 1 MHz and the temperature range from 213 to 473 K. The D.C. conductivity values showed a correlation with the Fe-ion concentration and ratio of iron ions on different valence states in the samples. On the basis of...
-
Microporous N-Doped Carbon Obtained from Salt Melt Pyrolysis of Chitosan toward Supercapacitor and Oxygen Reduction Catalysts
PublikacjaThe direct carbonization of low-cost and abundant chitosan biopolymer in the presencesalt eutectics leads to highly microporous, N-doped nanostructures. The microporous structureeasily manufactured using eutectic mixture (ZnCl2 -KCl) and chitosan. Potassium ions here can act as an intercalating agent, leading to the formation of lamellar carbon sheets, whereas zinc chloride generates significant porosity. Here, we present an efficient...
-
Enhanced photocatalytic activity of transparent carbon nanowall/TiO2 heterostructures
PublikacjaThe synthesis of novel tunable carbon-based nanostructure represented a pivotal point to enhance the efficiency of existing photocatalysts and to extend their applicability to a wider number of sustainable processes. In this letter, we describe a transparent photocatalytic heterostructure by growing boron-doped carbon nanowalls (B-CNWs) on quartz, followed by a simple TiO2 sol-gel deposition. The effect on the thickness and boron-doping...
-
Two-step synthesis of niobium doped Na–Ca–(Mg)–P–Si–O glasses
PublikacjaNiobium doped biosolubility glasses in the Na–Ca–(Mg)–P–Si–O system were prepared by using an untypical two-step synthesis route. The parent glass was melted in air atmosphere at 1350 °C followed by re-melting the glass in Nb crucible with the addition of metallic Mg/Ca powder in the nitrogen atmosphere. The second melting step was carried out at 1450–1650 °C, using an induction furnace. The topography and structure of the obtained...
-
Physicochemical and Mechanical Performance of Freestanding Boron-Doped Diamond Nanosheets Coated with C:H:N:O Plasma Polymer
PublikacjaThe physicochemical and mechanical properties of thin and freestanding heavy boron-doped diamond (BDD) nanosheets coated with a thin C:H:N:O plasma polymer were studied. First, diamond nanosheets were grown and doped with boron on a Ta substrate using the microwave plasma-enhanced chemical vapor deposition technique (MPECVD). Next, the BDD/Ta samples were covered with nylon 6.6 to improve their stability in harsh environments and...
-
AFM investigation of electrode fabricated by 3D printing
Dane Badawcze3D printing, also known as additive manufacturing, has enjoyed great interest in recent years due to the versatility of this method of producing various shapes and details. Due to the possibility of precise control of the shape and composition of the printed elements, the discussed technique can be widely used in electrochemistry, including electrochemical...
-
Tailoring Defects in B, N-Codoped Carbon Nanowalls for Direct Electrochemical Oxidation of Glyphosate and its Metabolites
PublikacjaTailoring the defects in graphene and its related carbon allotropes has great potential to exploit their enhanced electrochemical properties for energy applications, environmental remediation, and sensing. Vertical graphene, also known as carbon nanowalls (CNWs), exhibits a large surface area, enhanced charge transfer capability, and high defect density, making it suitable for a wide range of emerging applications. However, precise...
-
Hybrid electrode materials for fast performance devices
PublikacjaEnergy storage devices such as Electrochemical Double Layer Capacitors and other types of the electrochemical capacitors require chemically stable, non-soluble, electrochemically active electrode materials compatible with appropriate electrolytes. Factors which determine their applicability are derived from so called electrochemical window of electroltes, nature of charge accumulation and their kinetics. On the other hand technological...
-
Laser-Induced Graphitization of Polydopamine on Titania Nanotubes
PublikacjaSince the discovery of laser-induced graphite/graphene, there has been a notable surge of scientific interest in advancing diverse methodologies for their synthesis and applications. This study focuses on the utilization of a pulsed Nd:YAG laser to achieve graphitization of polydopamine (PDA) deposited on the surface of titania nanotubes. The partial graphitization is corroborated through Raman and XPS spectroscopies and supported...
-
Investigating Layered Topological Magnetic Materials as Efficient Electrocatalysts for the Hydrogen Evolution Reaction under High Current Densities
PublikacjaDespite considerable progress, high-performing durable catalysts operating under large current densities (i.e., >1000 mA/cm2) are still lacking. To discover platinum group metal-free (PGMfree) electrocatalysts for sustainable energy, our research involves investigating layered topological magnetic materials (semiconducting ferromagnets) as highly efficient electrocatalysts for the hydrogen evolution reaction under high current...
-
Synthesis of N-doped TiO2 nanoparticles with enhanced photocatalytic activity for 2,4-dichlorophenol degradation and H2 production
PublikacjaNitrogen-doped titanium dioxide (N-TiO2) nanoparticles were prepared using a modified sol-gel method. The as-prepared nanoparticles were characterized by state-of-the-art techniques for their optical, structural and morphological properties. The crystallite size, surface area and bandgap energy of reference TiO2 and N-TiO2 nanoparticles were found to be 16.1 and 10.9 nm, 83.6 and 131.8 m2 g−1 and 3.23 and 2.89 eV, respectively....
-
Boron-doped carbon nanowalls for fast and direct detection of cytochrome C and ricin by matrix-free laser desorption/ionization mass spectrometry
PublikacjaDetecting proteins via surface assisted laser desorption/ionization mass spectrometry (SALDI-MS) method is still highly challenging, and only few examples of nanomaterials have been demonstrated to perform such detection so far. In this study, carbon nanowalls (CNWs), vertically aligned graphene sheet-based materials, presenting specific morphology, dimensions, and boron doping levels have shown improved performances for both qualitative...
-
Carbon nanowalls: A new versatile graphene based interface for laser desorption/ionization-mass spectrometry detection of small compounds in real samples.
PublikacjaCarbon nanowalls, vertically aligned graphene nanosheets, attract attention owing to their tunable band-gap, high conductivity, high mechanical robustness, high optical absorbance and other remarkable properties. In this paper, we report for the first time, the use of hydrophobic boron-doped carbon nanowalls (CNWs) for laser desorption/ionization of small compounds and their subsequent detection by mass spectrometry (LDI-MS). The...
-
Tuning the ferromagnetic phase in the CDW compound SmNiC2 via chemical alloying
PublikacjaWe report a study on tuning the charge density wave (CDW) ferromagnet SmNiC2 to a weakly coupled superconductor by substituting La for Sm. X-ray diffraction measurements show that the doped compounds obey Vegard’s law, where La (Lu) alloying expands (shrinks) the lattice due to its larger (smaller) atomic size than Sm. In the series Sm1−xLaxNiC2, CDW transition (TCDW =148K) for SmNiC2 is gradually suppressed, while the ferromagnetic...
-
Electrical properties of A-site Ca-doped LaNb1-xAsxO4-δ ceramics
PublikacjaThe electrical properties of A-site Ca-doped LaNbO4 with the addition of As in the B-site, have been investigated. Total, grain- and specific grain boundary electric conductivities in different oxygen partial pressure, and water vapour partial pressure were determined. Additional conductivity measurements were performed in nitrogen, to suppress the possible p-type conductivity, focusing on protonic conductivity. The maximum measured...
-
N-doped carbon nanospheres as selective fluorescent probes for mercury detection in contaminated aqueous media: chemistry, fluorescence probing, cell line patterning, and liver tissue interaction
PublikacjaA precise nano-scale biosensor was developed here to detect Hg2+ in aqueous media. Nitrogen-doped carbon nanospheres (NCS) created from the pyrolysis of melamine–formaldehyde resin were characterized by FESEM, XRD, Raman spectra, EDS, PL, UV–vis spectra, and N2 adsorption–desorption, and were used as a highly selective and sensitive probe for detecting Hg2+ in aqueous media. The sensitivity of NCS to Hg2+ was evaluated by photoluminescence...
-
Efficacious Alkaline Copper Corrosion Inhibition by a Mixed Ligand Copper(II) Complex of 2,2′-Bipyridine and Glycine: Electrochemical and Theoretical Studies
PublikacjaA mixed ligand copper(II) complex, namely, [Cu(BPy)(Gly)Cl]⋅2H2O (CuC) (BPy=2,2′-bipyridine and Gly=glycine), was synthesized and characterized. The synthesized CuC complex was tested as inhibitor to effectively mitigate the corrosion of copper in alkaline solutions using the linear sweep voltammetry (LSV) and linear polarization resistance (LPR) techniques. For the sake of comparison, such two D.C. electrochemical techniques were...
-
Poly-L-Lysine-functionalized fluorescent diamond particles: pH triggered fluorescence enhancement via surface charge modulation
PublikacjaRecently, the interest in applying fluorescent diamond particles (FDPs) containing nitrogen-vacancy (NV) centers for enhancing the mechanical and chemical properties of some materials, biological imaging, and sensing has been expanding rapidly. The unique properties of NV centers such as intensive, time-stable fluorescence, and an electron spin, which exhibits long coherence time and may be manipulated using external stimuli, such...
-
Synthesis, structural characterization, and thermal properties of Ca‐ and La‐doped soda‐lime glasses by laser melting
PublikacjaLaser melting techniques have been used in the preparation of unconventional glass compositions with high melting temperatures. Thus, we wanted to test the feasibility of using a CO2 laser in the preparation of nitrogen-rich oxynitride glasses and nitride silicate glasses. Melting from oxides and metallic raw materials, we wanted to study first glass formation and possible evaporation losses of the glass components. Two glass series...
-
Nonconventional 1,8-Diazafluoren-9-One Aggregates for Green Light Enhancement in Hybrid Biocompatible Media
PublikacjaOrganic aggregates currently play a prominent role, mainly for their unique optoelectronic properties in the aggregated state. Such properties can be related to the aggregates’ structure and the molecular packing mode. In the literature, we have well-established models of H and J aggregates defined based on the molecular exciton model. However, unconventional aggregates, the most unrecognized forms, have been generating interest...
-
AlP compound and P-doping for promotion of electrocatalytic activity of N-doped carbon derived from metal-organic framework
PublikacjaWater splitting plays a key role in future fuels, where two processes occur - the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Nitrogen-doped carbon derived from...