Wyniki wyszukiwania dla: GRAPH NEURAL NETWORK COLLABORATIVE FILTERING
-
Tagged images with LEGO bricks - Plates Round Curved and Dishes
Dane BadawczeThe set contains images of LEGO bricks (from Plates Round Curved and Dishes category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Bricks Wedged
Dane BadawczeThe set contains images of LEGO bricks (from Bricks Wedged category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Technic Axles
Dane BadawczeThe set contains images of LEGO bricks (from Technic Axles category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Tagged images with LEGO bricks - Bars Ladders and Fences
Dane BadawczeThe set contains images of LEGO bricks (from Bars Ladders and Fences category). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Potential and Use of the Googlenet Ann for the Purposes of Inland Water Ships Classification
PublikacjaThis article presents an analysis of the possibilities of using the pre-degraded GoogLeNet artificial neural network to classify inland vessels. Inland water authorities monitor the intensity of the vessels via CCTV. Such classification seems to be an improvement in their statutory tasks. The automatic classification of the inland vessels from video recording is a one of the main objectives of the Automatic Ship Recognition and...
-
Analysis of 2D Feature Spaces for Deep Learning-based Speech Recognition
Publikacjaconvolutional neural network (CNN) which is a class of deep, feed-forward artificial neural network. We decided to analyze audio signal feature maps, namely spectrograms, linear and Mel-scale cepstrograms, and chromagrams. The choice was made upon the fact that CNN performs well in 2D data-oriented processing contexts. Feature maps were employed in the Lithuanian word recognition task. The spectral analysis led to the highest word...
-
Images of LEGO bricks
Dane BadawczeThe set contains images of LEGO bricks (from multiple categories). The images were prepared for training neural network for recognition and labeling of LEGO bricks. The images contain one brick each. The images were taken from different sides by handheld camera hovering over the bricks lying on a white, non reflective surface.
-
Optimized Deep Learning Model for Flood Detection Using Satellite Images
PublikacjaThe increasing amount of rain produces a number of issues in Kerala, particularly in urban regions where the drainage system is frequently unable to handle a significant amount of water in such a short duration. Meanwhile, standard flood detection results are inaccurate for complex phenomena and cannot handle enormous quantities of data. In order to overcome those drawbacks and enhance the outcomes of conventional flood detection...
-
Hybrid System for Ship-Aided Design Automation
PublikacjaA hybrid support system for ship design based on the methodology of CBR with some artificial intelligence tools such as expert system Exsys Developer along with fuzzy logic, relational Access database and artificial neural network with backward propagation of errors.
-
Self-Supervised Learning to Increase the Performance of Skin Lesion Classification
PublikacjaTo successfully train a deep neural network, a large amount of human-labeled data is required. Unfortunately, in many areas, collecting and labeling data is a difficult and tedious task. Several ways have been developed to mitigate the problem associated with the shortage of data, the most common of which is transfer learning. However, in many cases, the use of transfer learning as the only remedy is insufficient. In this study,...
-
Spatio-temporal filtering for determination of common mode error in regional GNSS networks
PublikacjaThe spatial correlation between different stations for individual components in the regional GNSS networks seems to be significant. The mismodelling in satellite orbits, the Earth orientation parameters (EOP), largescale atmospheric effects or satellite antenna phase centre corrections can all cause the regionally correlated errors. This kind of GPS time series errors are referred to as common mode errors (CMEs). They are usually...
-
Hybrid of Neural Networks and Hidden Markov Models as a modern approach to speech recognition systems
PublikacjaThe aim of this paper is to present a hybrid algorithm that combines the advantages ofartificial neural networks and hidden Markov models in speech recognition for control purpos-es. The scope of the paper includes review of currently used solutions, description and analysis of implementation of selected artificial neural network (NN) structures and hidden Markov mod-els (HMM). The main part of the paper consists of a description...
-
Deep neural networks for human pose estimation from a very low resolution depth image
PublikacjaThe work presented in the paper is dedicated to determining and evaluating the most efficient neural network architecture applied as a multiple regression network localizing human body joints in 3D space based on a single low resolution depth image. The main challenge was to deal with a noisy and coarse representation of the human body, as observed by a depth sensor from a large distance, and to achieve high localization precision....
-
Selected Technical Issues of Deep Neural Networks for Image Classification Purposes
PublikacjaIn recent years, deep learning and especially Deep Neural Networks (DNN) have obtained amazing performance on a variety of problems, in particular in classification or pattern recognition. Among many kinds of DNNs, the Convolutional Neural Networks (CNN) are most commonly used. However, due to their complexity, there are many problems related but not limited to optimizing network parameters, avoiding overfitting and ensuring good...
-
On Symmetry of Uniform and Preferential Attachment Graphs
PublikacjaMotivated by the problem of graph structure compression under realistic source models, we study the symmetry behavior of preferential and uniform attachment graphs. These are two dynamic models of network growth in which new nodes attach to a constant number m of existing ones according to some attachment scheme. We prove symmetry results for m=1 and 2 , and we conjecture that for m≥3 , both models yield asymmetry with high...
-
Decontaminating Arbitrary Graphs by Mobile Agents: a Survey
PublikacjaA team of mobile agents starting from homebases need to visit and clean all nodes of the network. The goal is to find a strategy, which would be optimal in the sense of the number of needed entities, the number of moves performed by them or the completion time of the strategy. Currently, the field of distributed graph searching by a team of mobile agents is rapidly expanding and many new approaches and models are being presented...
-
Deep Learning Optimization for Edge Devices: Analysis of Training Quantization Parameters
PublikacjaThis paper focuses on convolution neural network quantization problem. The quantization has a distinct stage of data conversion from floating-point into integer-point numbers. In general, the process of quantization is associated with the reduction of the matrix dimension via limited precision of the numbers. However, the training and inference stages of deep learning neural network are limited by the space of the memory and a...
-
Application of the neural networks for developing new parametrization of the Tersoff potential for carbon
PublikacjaPenta-graphene (PG) is a 2D carbon allotrope composed of a layer of pentagons having sp2- and sp3-bonded carbon atoms. A study carried out in 2018 has shown that the parameterization of the Tersoff potential proposed in 2005 by Ehrhart and Able (T05 potential) performs better than other potentials available for carbon, being able to reproduce structural and mechanical properties of the PG. In this work, we tried to improve the...
-
Computational intelligence methods in production management
PublikacjaThis chapter presents a survey of selected computational intelligence methods used in production management. This group of methods includes, among others, approaches based on the artificial neural networks, the evolutionary algorithms, the fuzzy logic systems and the particle swarm optimization mechanisms. From the abovementioned methods particularly noteworthy are the evolutionary and the particle swarm algorithms, which are successfully...
-
Topology Discovery of Hierarchical Ethernet LANs without SNMP support
PublikacjaThis paper presents an algorithm that allows for discovery of layer-2 hierarchical Ethernet network topology using agents running on selected end nodes. No SNMP, MIB, hardware, firmware, or operating system-level software modification is required. The method is based on transmission of customized Ethernet frames among installed software agents. It can be used to discover the topology of LAN or one VLAN segment as long as no MAC...
-
The role of EMG module in hybrid interface of prosthetic arm
PublikacjaNearly 10% of all upper limb amputations concern the whole arm. It affects the mobility and reduces the productivity of such a person. These two factors can be restored by using prosthetics. However, the complexity of human arm makes restoring its basic functions quite difficult. When the osseointegration and/or targeted muscle reinnervation (TMR) are not possible, different modalities can be used to control the prosthesis. In...
-
Pawlak's flow graph extensions for video surveillance systems
PublikacjaThe idea of the Pawlak's flow graphs is applicable to many problems in various fields related to decision algorithms or data mining. The flow graphs can be used also in the video surveillance systems. Especially in distributed multi-camera systems which are problematic to be handled by human operators because of their limited perception. In such systems automated video analysis needs to be implemented. Important part of this analysis...
-
Artificial Neural Networks as an architectural design tool- generating new detail forms based on the Roman Corinthian order capital
PublikacjaThe following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital....
-
Using Long-Short term Memory networks with Genetic Algorithm to predict engine condition
PublikacjaPredictive maintenance (PdM) is a type of approach for maintenance processes, allowing maintenance actions to be managed depending on the machine's current condition. Maintenance is therefore carried out before failures occur. The approach doesn’t only help avoid abrupt failures but also helps lower maintenance cost and provides possibilities to manufacturers to manage maintenance budgets in a more efficient way. A new deep neural...
-
An ANN-Based Method for On-Load Tap Changer Control in LV Networks with a Large Share of Photovoltaics—Comparative Analysis
PublikacjaThe paper proposes a new local method of controlling the on-load tap changer (OLTC) of a transformer to mitigate negative voltage phenomena in low-voltage (LV) networks with a high penetration of photovoltaic (PV) installations. The essence of the method is the use of the load compensation (LC) function with settings determined via artificial neural network (ANN) algorithms. The proposed method was compared with other selected...
-
A MODEL FOR FORECASTING PM10 LEVELS WITH THE USE OF ARTIFICIAL NEURAL NETWORKS
PublikacjaThis work presents a method of forecasting the level of PM10 with the use of artificial neural networks. Current level of particulate matter and meteorological data was taken into account in the construction of the model (checked the correlation of each variable and the future level of PM10), and unidirectional networks were used to implement it due to their ease of learning. Then, the configuration of the network (built on the...
-
Characterizing the Scalability of Graph Convolutional Networks on Intel® PIUMA
PublikacjaLarge-scale Graph Convolutional Network (GCN) inference on traditional CPU/GPU systems is challenging due to a large memory footprint, sparse computational patterns, and irregular memory accesses with poor locality. Intel’s Programmable Integrated Unffied Memory Architecture (PIUMA) is designed to address these challenges for graph analytics. In this paper, a detailed characterization of GCNs is presented using the Open-Graph Benchmark...
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublikacjaW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wykorzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
Analysis of Denoising Autoencoder Properties Through Misspelling Correction Task
PublikacjaThe paper analyzes some properties of denoising autoencoders using the problem of misspellings correction as an exemplary task. We evaluate the capacity of the network in its classical feed-forward form. We also propose a modification to the output layer of the net, which we called multi-softmax. Experiments show that the model trained with this output layer outperforms traditional network both in learning time and accuracy. We...
-
Survival time prognosis under a Markov model of cancer development
PublikacjaIn this study we look at a breast cancer data set of women from Pomerania region collected in year 1987-1992 in the Medical University of Gdańsk. We analyze the clinical risk factors in conjunction with Markov model of cancer development. We evaluate Artificial Neural Network (ANN) survival time prediction via a simulation study.
-
The Use of an Autoencoder in the Problem of Shepherding
PublikacjaThis paper refers to the problem of shepherding clusters of passive agents consisting of a large number of objects by a team of active agents. The problem of shepherding and the difficulties that arise with the increasing number of data describing the location of agents have been described. Several methods for reducing the dimensionality of data are presented. Selected autoencoding method using a Restricted Boltzmann Machine is...
-
A city is not a tree: a multi-city study on street network and urban life
PublikacjaChristopher Alexander, a British-American scholar, differentiated an old (natural) city from a new (planned) one by structure. The former resembles a “semilattice”, or a complex system encompassing many interconnected sub-systems. The latter is shaped in a graph-theoretical “tree”, which lacks the structural complexity as its sub-systems are compartmentalized into a single hierarchy. This structural distinction explains why, or...
-
Musical Instrument Identification Using Deep Learning Approach
PublikacjaThe work aims to propose a novel approach for automatically identifying all instruments present in an audio excerpt using sets of individual convolutional neural networks (CNNs) per tested instrument. The paper starts with a review of tasks related to musical instrument identification. It focuses on tasks performed, input type, algorithms employed, and metrics used. The paper starts with the background presentation, i.e., metadata...
-
Heavy duty vehicle fuel consumption modelling using artificial neural networks
PublikacjaIn this paper an artificial neural network (ANN) approach to modelling fuel consumption of heavy duty vehicles is presented. The proposed method uses easy accessible data collected via CAN bus of the truck. As a benchmark a conventional method, which is based on polynomial regression model, is used. The fuel consumption is measured in two different tests, performed by using a unique test bench to apply the load to the engine. Firstly,...
-
Pose classification in the gesture recognition using the linear optical sensor
PublikacjaGesture sensors for mobile devices, which have a capability of distinguishing hand poses, require efficient and accurate classifiers in order to recognize gestures based on the sequences of primitives. Two methods of poses recognition for the optical linear sensor were proposed and validated. The Gaussian distribution fitting and Artificial Neural Network based methods represent two kinds of classification approaches. Three types...
-
Video of LEGO Bricks on Conveyor Belt Dataset Series
PublikacjaThe dataset series titled Video of LEGO bricks on conveyor belt is composed of 14 datasets containing video recordings of a moving white conveyor belt. The recordings were created using a smartphone camera in Full HD resolution. The dataset allows for the preparation of data for neural network training, and building of a LEGO sorting machine that can help builders to organise their collections.
-
Classifying Emotions in Film Music - A Deep Learning Approach
PublikacjaThe paper presents an application for automatically classifying emotions in film music. A model of emotions is proposed, which is also associated with colors. The model created has nine emotional states, to which colors are assigned according to the color theory in film. Subjective tests are carried out to check the correctness of the assumptions behind the adopted emotion model. For that purpose, a statistical analysis of the...
-
Adding Interpretability to Neural Knowledge DNA
PublikacjaThis paper proposes a novel approach that adds the interpretability to Neural Knowledge DNA (NK-DNA) via generating a decision tree. The NK-DNA is a promising knowledge representation approach for acquiring, storing, sharing, and reusing knowledge among machines and computing systems. We introduce the decision tree-based generative method for knowledge extraction and representation to make the NK-DNA more explainable. We examine...
-
Developing a Low SNR Resistant, Text Independent Speaker Recognition System for Intercom Solutions - A Case Study
PublikacjaThis article presents a case study on the development of a biometric voice verification system for an intercom solution, utilizing the DeepSpeaker neural network architecture. Despite the variety of solutions available in the literature, there is a noted lack of evaluations for "text-independent" systems under real conditions and with varying distances between the speaker and the microphone. This article aims to bridge this gap....
-
Tagged images with bees
Dane BadawczeImages taken from bee hive with tagged bees. The images are prepared for training yolo5 deep neural network (supplied with the data).
-
Video of LEGO bricks on conveyor belt - flags and signs
Dane BadawczeThe set contains videos of LEGO bricks (flags and signs) moving on a white conveyor belt. The images were prepared for training neural network for recognition of LEGO bricks. The bricks were separated as much as possible and in most cases they should not overlap. The images were taken from different sides by stationary camera located over the final...
-
Influence of accelerometer signal pre-processing and classification method on human activity recognition
PublikacjaA study of data pre-processing influence on accelerometer-based human activity recognition algorithms is presented. The frequency band used to filter-out the accelerometer signals and the number of accelerometers involved were considered in terms of their influence on the recognition accuracy. In the test four methods of classification were used: support vector machine, decision trees, neural network, k-nearest neighbor.
-
Multifunctional PID Neuro-Controller for Synchronous Generator
PublikacjaThis paper deals with a PID Neuro-Controller (PIDNC) for synchronous generator system. The controller is based on artificial neural network and adaptive control strategy. It ensures two functions: maintaining the generator voltage at its desired value and damping electromechanical oscillations. The performance of the proposed controller is evaluated on the basis of simulation tests. A comparative study of the results obtained with...
-
Automatic Breath Analysis System Using Convolutional Neural Networks
PublikacjaDiseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is not uncommon for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected...
-
Automatic Breath Analysis System Using Convolutional Neural Networks
PublikacjaDiseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is common for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected as...
-
Automatic labeling of traffic sound recordings using autoencoder-derived features
PublikacjaAn approach to detection of events occurring in road traffic using autoencoders is presented. Extensions of existing algorithms of acoustic road events detection employing Mel Frequency Cepstral Coefficients combined with classifiers based on k nearest neighbors, Support Vector Machines, and random forests are used. In our research, the acoustic signal gathered from the microphone placed near the road is split into frames and converted...
-
Application of Feed Forward Neural Networks for Modeling of Heat Transfer Coefficient During Flow Condensation for Low and High Values of Saturation Temperatur
PublikacjaMost of the literature models for condensation heat transfer prediction are based on specific experimental parameters and are not general in nature for applications to fluids and non-experimental thermodynamic conditions. Nearly all correlations are created to predict data in normal HVAC conditions below 40°C. High temperature heat pumps operate at much higher parameters. This paper aims to create a general model for the calculation...
-
Depth Images Filtering In Distributed Streaming
PublikacjaIn this paper, we propose a distributed system for point cloud processing and transferring them via computer network regarding to effectiveness-related requirements. We discuss the comparison of point cloud filters focusing on their usage for streaming optimization. For the filtering step of the stream pipeline processing we evaluate four filters: Voxel Grid, Radial Outliner Remover, Statistical Outlier Removal and Pass Through....
-
Collision-Free Network Exploration
PublikacjaA set of mobile agents is placed at different nodes of a n-node network. The agents synchronously move along the network edges in a collision-free way, i.e., in no round may two agents occupy the same node. In each round, an agent may choose to stay at its currently occupied node or to move to one of its neighbors. An agent has no knowledge of the number and initial positions of other agents. We are looking for the shortest possible...
-
Semantic segmentation training using imperfect annotations and loss masking
PublikacjaOne of the most significant factors affecting supervised neural network training is the precision of the annotations. Also, in a case of expert group, the problem of inconsistent data annotations is an integral part of real-world supervised learning processes, well-known to researchers. One practical example is a weak ground truth delineation for medical image segmentation. In this paper, we have developed a new method of accurate...