Wyniki wyszukiwania dla: GRAPH NEURAL NETWORK COLLABORATIVE FILTERING
-
Rating by detection: an artifact detection protocol for rating EEG quality with average event duration
PublikacjaQuantitative evaluation protocols are critical for the development of algorithms that remove artifacts from real EEG optimally. However, visually inspecting the real EEG to select the top-performing artifact removal pipeline is infeasible while hand-crafted EEG data allow assessing artifact removal configurations only in a simulated environment. This study proposes a novel, principled approach for quantitatively evaluating algorithmically...
-
RF Multi-Functional Input-Reflectionless Dispersive-Delay Structure With Sharp-Rejection Filtering Using Channelization Techniques
PublikacjaA class of RF multi-functional input-reflectionless dispersive-delay structure (DDS) with linear-type in-band groupdelay variation and sharp-rejection bandpass-filtering capability is reported. It exploits a two-branch-channelized/balanced-type circuit with similar low-order reflective DDS units inside its channels, which are connected through input/output 3-dB quadrature wideband couplers. The adopted DDS unit is based on a coupledresonator...
-
Towards bees detection on images: study of different color models for neural networks
PublikacjaThis paper presents an approach to bee detection in videostreams using a neural network classifier. We describe the motivationfor our research and the methodology of data acquisition. The maincontribution to this work is a comparison of different color models usedas an input format for a feedforward convolutional architecture appliedto bee detection. The detection process has is based on a neural...
-
Mitigating Time-Constrained Stolen-Credentials Content Poisoning in an NDN Setting
PublikacjaNDN is a content-centric networking architecture using globally addressable information objects, created by publishers and cached by network nodes to be later accessed by subscribers. Content poisoning attacks consist in the substi-tution by an intruder publisher of bogus objects for genuine ones created by an honest publisher. With valid credentials stolen from an honest publisher, such attacks seem unstoppa-ble unless object...
-
Towards Cancer Patients Classification Using Liquid Biopsy
PublikacjaLiquid biopsy is a useful, minimally invasive diagnostic and monitoring tool for cancer disease. Yet, developing accurate methods, given the potentially large number of input features, and usually small datasets size remains very challenging. Recently, a novel feature parameterization based on the RNA-sequenced platelet data which uses the biological knowledge from the Kyoto Encyclopedia of Genes and Genomes, combined with a classifier...
-
Deep learning for recommending subscription-limited documents
PublikacjaDocuments recommendation for a commercial, subscription-based online platform is important due to the difficulty in navigation through a large volume and diversity of content available to clients. However, this is also a challenging task due to the number of new documents added every day and decreasing relevance of older contents. To solve this problem, we propose deep neural network architecture that combines autoencoder with...
-
Method for Clustering of Brain Activity Data Derived from EEG Signals
PublikacjaA method for assessing separability of EEG signals associated with three classes of brain activity is proposed. The EEG signals are acquired from 23 subjects, gathered from a headset consisting of 14 electrodes. Data are processed by applying Discrete Wavelet Transform (DWT) for the signal analysis and an autoencoder neural network for the brain activity separation. Processing involves 74 wavelets from 3 DWT families: Coiflets,...
-
Dynamic Bankruptcy Prediction Models for European Enterprises
PublikacjaThis manuscript is devoted to the issue of forecasting corporate bankruptcy. Determining a firm’s bankruptcy risk is one of the most interesting topics for investors and decision-makers. The aim of the paper is to develop and to evaluate dynamic bankruptcy prediction models for European enterprises. To conduct this objective, four forecasting models are developed with the use of four different methods—fuzzy sets, recurrent and...
-
MACHINE LEARNING SYSTEM FOR AUTOMATED BLOOD SMEAR ANALYSIS
PublikacjaIn this paper the authors propose a decision support system for automatic blood smear analysis based on microscopic images. The images are pre-processed in order to remove irrelevant elements and to enhance the most important ones - the healthy blood cells (erythrocytes) and the pathologic (echinocytes). The separated blood cells are analyzed in terms of their most important features by the eigenfaces method. The features are the...
-
Fragmentation of Hydrographic Big Data Into Subsets During Reduction Process
PublikacjaThe article presented problems of fragmentation of hydrographic big data into smaller subsets during reduction process. Data reduction is a processing of reduce the value of the data set, in order to make them easier and more effective for the goals of the analysis. The main aim of authors is to create new reduction method. The article presented the first stage of this method – fragmentation of bathymetric data into subsets. It...
-
Driver fatigue detection method based on facial image analysis
PublikacjaNowadays, ensuring road safety is a crucial issue that demands continuous development and measures to minimize the risk of accidents. This paper presents the development of a driver fatigue detection method based on the analysis of facial images. To monitor the driver's condition in real-time, a video camera was used. The method of detection is based on analyzing facial features related to the mouth area and eyes, such as...
-
Glacial Landform Classification with Vision Transformer and Digital Elevation Model
PublikacjaClassification of glacial landforms is a task in geomorphology that has not been widely explored with deep neural network methods. This study uses Vision Transformer (ViT) architecture to classify glacial landforms using Digital Elevation Model (DEM) in three study sites: Elise Glacier in Svalbard, Norway; Gardno-Leba Plain and Lubawa Upland in Poland. In datasets each of those sites has different DEM resolutions and terrain types...
-
Instance segmentation of stack composed of unknown objects
PublikacjaThe article reviews neural network architectures designed for the segmentation task. It focuses mainly on instance segmentation of stacked objects. The main assumption is that segmentation is based on a color image with an additional depth layer. The paper also introduces the Stacked Bricks Dataset based on three cameras: RealSense L515, ZED2, and a synthetic one. Selected architectures: DeepLab, Mask RCNN, DEtection TRansformer,...
-
Estimation of the Ultimate Strength of FRP Strips-to-Masonry Substrates Bond
PublikacjaFiber-Reinforced Polymers (FRP) were developed as a new method over the past decades due to their many beneficial mechanical properties, and they are commonly applied to strengthen masonry structures. In this paper, the Artificial Neural Network (ANN), K-fold Cross-Validation (KFCV) technique, Multivariate Adaptive Regression Spline (MARS) method, and M5 Model Tree (M5MT) method were utilized to predict the ultimate strength of...
-
Photos of LEGO bricks
Dane BadawczeRandom photos of the following LEGO bricks: 2419, 2450, 3022, 3031, 4070, 30357, 41682, 44570, 47998, 52107, 54383, 54384, 64799, 87609, 93274, 99206, 99781. The bricks were placed on a white sheet of paper, the photos were taken by hand, using Huawei P20 PRO camera positioned above the bricks. The photos were taken with and without flashlight. The...
-
Intracranial hemorrhage detection in 3D computed tomography images using a bi-directional long short-term memory network-based modified genetic algorithm
PublikacjaIntroduction: Intracranial hemorrhage detection in 3D Computed Tomography (CT) brain images has gained more attention in the research community. The major issue to deal with the 3D CT brain images is scarce and hard to obtain the labelled data with better recognition results. Methods: To overcome the aforementioned problem, a new model has been implemented in this research manuscript. After acquiring the images from the Radiological...
-
Automated hearing loss type classification based on pure tone audiometry data
PublikacjaHearing problems are commonly diagnosed with the use of tonal audiometry, which measures a patient’s hearing threshold in both air and bone conduction at various frequencies. Results of audiometry tests, usually represented graphically in the form of an audiogram, need to be interpreted by a professional audiologist in order to determine the exact type of hearing loss and administer proper treatment. However, the small number of...
-
A Novel Method for the Deblurring of Photogrammetric Images Using Conditional Generative Adversarial Networks
PublikacjaThe visual data acquisition from small unmanned aerial vehicles (UAVs) may encounter a situation in which blur appears on the images. Image blurring caused by camera motion during exposure significantly impacts the images interpretation quality and consequently the quality of photogrammetric products. On blurred images, it is difficult to visually locate ground control points, and the number of identified feature points decreases...
-
Using Convolutional Neural Networks for Corneal Arcus Detection Towards Familial Hypercholesterolemia Screening
PublikacjaFamilial hypercholesterolemia (FH) is a highly undiagnosed disease. Among FH patients, the onset of premature coronary artery disease is 13 times higher than in the general population. Early diagnosis and treatment is essential to prevent cardiovascular diseases and their complications, and to prolong life. One of the clinical criteria of FH is the occurrence of a corneal arcus (CA) among patients, especially those under 45 years...
-
Deep Video Multi-task Learning Towards Generalized Visual Scene Enhancement and Understanding
PublikacjaThe goal of this thesis was to develop efficient video multi-task convolutional architectures for a range of diverse vision tasks, on RGB scenes, leveraging i) task relationships and ii) motion information to improve multi-task performance. The approach we take starts from the integration of diverse tasks within video multi-task learning networks. We present the first two datasets of their kind in the existing literature, featuring...
-
Training of Deep Learning Models Using Synthetic Datasets
PublikacjaIn order to solve increasingly complex problems, the complexity of Deep Neural Networks also needs to be constantly increased, and therefore training such networks requires more and more data. Unfortunately, obtaining such massive real world training data to optimize neural networks parameters is a challenging and time-consuming task. To solve this problem, we propose an easy-touse and general approach to training deep learning...
-
Scanning networks with cactus topology
PublikacjaThe family of Pursuit and Evasion problems is widelystudied because of its numerous practical applications,ranging from communication protocols to cybernetic andphysical security. Calculating the search number of a graphis one of most commonly analyzed members of this problemfamily. The search number is the smallest number of mobileagents required to capture an invisible and arbitrarily fastfugitive, for instance piece of malicious...
-
Human-Computer Interface Based on Visual Lip Movement and Gesture Recognition
PublikacjaThe multimodal human-computer interface (HCI) called LipMouse is presented, allowing a user to work on a computer using movements and gestures made with his/her mouth only. Algorithms for lip movement tracking and lip gesture recognition are presented in details. User face images are captured with a standard webcam. Face detection is based on a cascade of boosted classifiers using Haar-like features. A mouth region is located in...
-
Machine Learning and Text Analysis in an Artificial Intelligent System for the Training of Air Traffic Controllers
PublikacjaThis chapter presents the application of new information technology in education for the training of air traffic controllers (ATCs). Machine learning, multi-criteria decision analysis, and text analysis as the methods of artificial intelligence for ATCs training have been described. The authors have made an analysis of the International Civil Aviation Organization documents for modern principles of ATCs education. The prototype...
-
IFE: NN-aided Instantaneous Pitch Estimation
PublikacjaPitch estimation is still an open issue in contemporary signal processing research. Nowadays, growing momentum of machine learning techniques application in the data-driven society allows for tackling this problem from a new perspective. This work leverages such an opportunity to propose a refined Instantaneous Frequency and power based pitch Estimator method called IFE. It incorporates deep neural network based pitch estimation...
-
Intra-subject class-incremental deep learning approach for EEG-based imagined speech recognition
PublikacjaBrain–computer interfaces (BCIs) aim to decode brain signals and transform them into commands for device operation. The present study aimed to decode the brain activity during imagined speech. The BCI must identify imagined words within a given vocabulary and thus perform the requested action. A possible scenario when using this approach is the gradual addition of new words to the vocabulary using incremental learning methods....
-
Food analysis using artificial senses.
PublikacjaNowadays, consumers are paying great attention to the characteristics of food such as smell, taste, and appearance. This motivates scientists to imitate human senses using devices known as electronic senses. These include electronic noses, electronic tongues, and computer vision. Thanks to the utilization of various sensors and methods of signal analysis, artificial senses are widely applied in food analysis for process monitoring...
-
Driver’s Condition Detection System Using Multimodal Imaging and Machine Learning Algorithms
PublikacjaTo this day, driver fatigue remains one of the most significant causes of road accidents. In this paper, a novel way of detecting and monitoring a driver’s physical state has been proposed. The goal of the system was to make use of multimodal imaging from RGB and thermal cameras working simultaneously to monitor the driver’s current condition. A custom dataset was created consisting of thermal and RGB video samples. Acquired data...
-
A Case Study of Electric Vehicles Load Forecasting in Residential Sector Using Machine Learning Techniques
PublikacjaElectric vehicles (EVs) have been widely adopted to prevent global warming in recent years. The higher installation of Level-1 and Level-2 chargers in residential areas soon poses challenges to the distributed network. However, such challenges can be mitigated through the adoption of smart charging or controlled charging schemes. To facilitate the implementation of smart charging, accurate forecasting of EV charging demand in residential...
-
Identification of category associations using a multilabel classifier
PublikacjaDescription of the data using categories allows one to describe it on a higher abstraction level. In this way, we can operate on aggregated groups of the information, allowing one to see relationships that do not appear explicit when we analyze the individual objects separately. In this paper we present automatic identification of the associations between categories used for organization of the textual data. As experimental data...
-
Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych
PublikacjaW artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wyko-rzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...
-
Fusion-based Representation Learning Model for Multimode User-generated Social Network Content
PublikacjaAs mobile networks and APPs are developed, user-generated content (UGC), which includes multi-source heterogeneous data like user reviews, tags, scores, images, and videos, has become an essential basis for improving the quality of personalized services. Due to the multi-source heterogeneous nature of the data, big data fusion offers both promise and drawbacks. With the rise of mobile networks and applications, UGC, which includes...
-
Thermal Image Processing for Respiratory Estimation from Cubical Data with Expandable Depth
PublikacjaAs healthcare costs continue to rise, finding affordable and non-invasive ways to monitor vital signs is increasingly important. One of the key metrics for assessing overall health and identifying potential issues early on is respiratory rate (RR). Most of the existing methods require multiple steps that consist of image and signal processing. This might be difficult to deploy on edge devices that often do not have specialized...
-
Efficiency Increasing of No-reference Image Quality Assessment in UAV Applications
PublikacjaUnmanned aerial vehicle (UAV) imaging is a dynamically developing field, where the effectiveness of imaging applications highly depends on quality of the acquired images. No-reference image quality assessment is widely used for quality control and image processing management. However, there is a lack of accuracy and adequacy of existing quality metrics for human visual perception. In this paper, we demonstrate that this...
-
A Study of Cross-Linguistic Speech Emotion Recognition Based on 2D Feature Spaces
PublikacjaIn this research, a study of cross-linguistic speech emotion recognition is performed. For this purpose, emotional data of different languages (English, Lithuanian, German, Spanish, Serbian, and Polish) are collected, resulting in a cross-linguistic speech emotion dataset with the size of more than 10.000 emotional utterances. Despite the bi-modal character of the databases gathered, our focus is on the acoustic representation...
-
Ranking Speech Features for Their Usage in Singing Emotion Classification
PublikacjaThis paper aims to retrieve speech descriptors that may be useful for the classification of emotions in singing. For this purpose, Mel Frequency Cepstral Coefficients (MFCC) and selected Low-Level MPEG 7 descriptors were calculated based on the RAVDESS dataset. The database contains recordings of emotional speech and singing of professional actors presenting six different emotions. Employing the algorithm of Feature Selection based...
-
The Development of a Combined Method to Quickly Assess Ship Speed and Fuel Consumption at Different Powertrain Load and Sea Conditions
PublikacjaDecision support systems (DSS) recently have been increasingly in use during ships operation. They require realistic input data regarding different aspects of navigation. To address the optimal weather routing of a ship, which is one of the most promising field of DSS application, it is necessary to accurately predict an actually attainable speed of a ship and corresponding fuel consumption at given loading conditions and predicted...
-
Behavior Analysis and Dynamic Crowd Management in Video Surveillance System
PublikacjaA concept and practical implementation of a crowd management system which acquires input data by the set of monitoring cameras is presented. Two leading threads are considered. First concerns the crowd behavior analysis. Second thread focuses on detection of a hold-ups in the doorway. The optical flow combined with soft computing methods (neural network) is employed to evaluate the type of crowd behavior, and fuzzy logic aids detection...
-
An electronic nose for quantitative determination of gas concentrations
PublikacjaThe practical application of human nose for fragrance recognition is severely limited by the fact that our sense of smell is subjective and gets tired easily. Consequen tly, there is considerable need for an instrument that can be a substitution of the human sense of smell. Electronic nose devices from the mid 1980s are used in growing number of applications. They comprise an array of several electrochemical gas sensors...
-
Prediction of the Biogenic Amines Index of Poultry Meat Using an Electronic Nose
PublikacjaThe biogenic amines index of fresh chicken meat samples during refrigerated storage was predicted based on the headspace analysis using an electronic nose equipped with an array of electrochemical sensors. The reference biogenic amines index values were obtained using dispersive liquid–liquid microextraction–gas chromatography–mass spectrometry. A prototype electronic nose with modular construction and a dedicated sample chamber...
-
Standard of living in Poland at regional level - classification with Kohonen self-organizing maps
PublikacjaThe standard of living is spatially diversified and its analyzes enable shaping regional policy. Therefore, it is crucial to assess the standard of living and to classify regions due to their standard of living, based on a wide set of determinants. The most common research methods are those based on composite indicators, however, they are not ideal. Among the current critiques moved to the use of composite...
-
Vehicle detector training with labels derived from background subtraction algorithms in video surveillance
PublikacjaVehicle detection in video from a miniature station- ary closed-circuit television (CCTV) camera is discussed in the paper. The camera provides one of components of the intelligent road sign developed in the project concerning the traffic control with the use of autonomous devices being developed. Modern Convolutional Neural Network (CNN) based detectors need big data input, usually demanding their manual labeling. In the presented...
-
Mixed-use buildings as the basic unit that shapes the housing environment of smart cities of the future
PublikacjaThe contemporary approach to creating the residential function is confronted with the trend of increasing the volume of buildings and expectations regarding the future urban environment focused on sustainable development. This paper presents an overview of the residential structure in the context of defined thematic scopes. Namely, it is a systemic approach to the problem of designing mixed-use buildings which create a modern residential...
-
Architectural Modifications to Enhance Steganalysis with Convolutional Neural Networks
PublikacjaThis paper investigates the impact of various modifications introduced to current state-of-the-art Convolutional Neural Network (CNN) architectures specifically designed for the steganalysis of digital images. Usage of deep learning methods has consistently demonstrated improved results in this field over the past few years, primarily due to the development of newer architectures with higher classification accuracy compared to...
-
Detecting Objects of Various Categories in Optical Remote Sensing Imagery Using Neural Networks
PublikacjaThe effective detection of objects in remote sensing images is of great research importance, so recent years have seen a significant progress in deep learning techniques in this field. However, despite much valuable research being conducted, many challenges still remain. A lot of research projects focus on detecting objects of a single category (class), while correctly detecting objects of different categories is much harder. The...
-
Buried Object Characterization Using Ground Penetrating Radar Assisted by Data-Driven Surrogate-Models
PublikacjaThis work addresses artificial-intelligence-based buried object characterization using 3-D full-wave electromagnetic simulations of a ground penetrating radar (GPR). The task is to characterize cylindrical shape, perfectly electric conductor (PEC) object buried in various dispersive soil media, and in different positions. The main contributions of this work are (i) development of a fast and accurate data driven surrogate modeling...
-
Agent-based social network as a simulation of a market behaviour
PublikacjaRecent years and the outbreak of world's economic crisis in 2008 proved the crucial importance of reliable analysis of market dynamics. However, werarely apply models of proper detail level (the global prosperity forecast of 2007 can be seen as a grim proof). The behaviour of individuals and companies is far from being ideal and rational. Many claims that the economic paradigm of rational expectations (coming from J. Muth and R....
-
Prognozirovanie svojstv betonov s pomoŝ'û iskusstvennyh nejronovyh setej
PublikacjaObserwacje mózgu ludzkiego oraz podstawowych komórek z jakich się składa (neuronów), doprowadziły do prób modelowania niedużych układów połączonych neuronów. Układy te, zwane w literaturze jako sieci neuronowe lub sieci neuropodobne (ang. neural network) wykazują pewne cechy zbliżone do cech mózgu. Są nimi np. zdolność uczenia i kojarzenia. Choć znany obecnie model matematyczny neuronu jest dość skomplikowany, to zachęcające wyniki...
-
Vehicle Detection with Self-Training for Adaptative Video Processing Embedded Platform
PublikacjaTraffic monitoring from closed-circuit television (CCTV) cameras on embedded systems is the subject of the performed experiments. Solving this problem encounters difficulties related to the hardware limitations, and possible camera placement in various positions which affects the system performance. To satisfy the hardware requirements, vehicle detection is performed using a lightweight Convolutional Neural Network (CNN), named...
-
Limited selectivity of amperometric gas sensors operating in multicomponent gas mixtures and methods of selectivity improvement
PublikacjaIn recent years, smog and poor air quality have became a growing environmental problem. There is a need to continuously monitor the quality of the air. The lack of selectivity is one of the most important problems limiting the use of gas sensors for this purpose. In this study, the selectivity of six amperometric gas sensors is investigated. First, the sensors were calibrated in order to find a correlation between the concentration...