Filtry
wszystkich: 11759
-
Katalog
- Publikacje 8166 wyników po odfiltrowaniu
- Czasopisma 213 wyników po odfiltrowaniu
- Konferencje 108 wyników po odfiltrowaniu
- Osoby 205 wyników po odfiltrowaniu
- Wynalazki 1 wyników po odfiltrowaniu
- Projekty 10 wyników po odfiltrowaniu
- Laboratoria 1 wyników po odfiltrowaniu
- Kursy Online 325 wyników po odfiltrowaniu
- Wydarzenia 27 wyników po odfiltrowaniu
- Dane Badawcze 2703 wyników po odfiltrowaniu
wyświetlamy 1000 najlepszych wyników Pomoc
Wyniki wyszukiwania dla: DATA DRIVEN METHODS
-
Application of data driven methods in diagnostic of selected process faults of nuclear power plant steam turbine
PublikacjaArticle presents a comparison of process anomaly detection in nuclear power plant steam turbine using combination of data driven methods. Three types of faults are considered: water hammering, fouling and thermocouple fault. As a virtual plant a nonlinear, dynamic, mathe- matical steam turbine model is used. Two approaches for fault detection using one class and two class classiers are tested and compared.
-
Fundamentals of Data-Driven Surrogate Modeling
PublikacjaThe primary topic of the book is surrogate modeling and surrogate-based design of high-frequency structures. The purpose of the first two chapters is to provide the reader with an overview of the two most important classes of modeling methods, data-driven (or approx-imation), as well as physics-based ones. These are covered in Chap-ters 1 and 2, respectively. The remaining parts of the book give an exposition of the specific aspects...
-
Dis/Trust and data-driven technologies
PublikacjaThis concept paper contextualises, defines, and systematises the concepts of trust and distrust (and their interrelations), providing a critical review of existing literature so as to identify gaps, disjuncture, and continuities in the use of these concepts across the social sciences and in the context of the consolidation of the digital society. Firstly, the development of the concept of trust is explored by looking at its use...
-
Methods Data Analyses
Czasopisma -
Multilevel pharmacokinetics-driven modeling of metabolomics data
Publikacja -
Enhanced uniform data sampling for constrained data‐driven modeling of antenna input characteristics
PublikacjaData-driven surrogates are the most popular replacement models utilized in many fields of engineering and science, including design of microwave and antenna structures. The primary practical issue is a curse of dimensionality which limits the number of independent parameters that can be accounted for in the modelling process. Recently, a performance-driven modelling technique has been proposed where the constrained domain of the...
-
Data Mining Applications and Methods in Medicine
PublikacjaIn this paper we describe the research area of data mining and its applications in medicine. The origins of data mining and its crucial features are shortly presented. We discuss the specificity of medicine as an application area for computer systems. Characteristic features of the medical data are investigated. Common problems in the area are also presented as well as the strengths and capabilities of the data mining methods....
-
Data acquisition methods for GEM detectors
Publikacja -
Data gathering methods : review - questionnaire
PublikacjaArtykuł przedstawia koncepcję, pochodzenie oraz zastosowania dla jednej z metod oceny użyteczności - wywiadu, wraz z jego głównym narzędziem - ankietami. Stanowi część przeglądu dostępnych metod poprawy użyteczności.
-
Data gathering methods : card sorting
PublikacjaArtykuł przedstawia koncepcję, pochodzenie oraz zastosowania dla jednej z metod oceny użyteczności i budowania menu w aplikacjach informatycznych - sortowania kart. Stanowi część przeglądu dostępnych metod poprawy użyteczności.
-
Improved Uniform Sampling in Constrained Domains for Data-Driven Modelling of Antennas
PublikacjaData-driven surrogate modelling of antenna structures is an attractive way of accelerating the design process, in particular, parametric optimization. In practice, construction of surrogates is hindered by curse of dimensionality as well as wide ranges of geometry parameters that need to be covered in order to make the model useful. These difficulties can be alleviated by constrained performance-driven modelling with the surrogate...
-
Data-Driven Modeling of Mechanical Properties of Fiber-Reinforced Concrete: A Critical Review
PublikacjaFiber-reinforced concrete (FRC) is extensively used in diverse structural engineering applications, and its mechanical properties are crucial for designing and evaluating its performance. The compressive, flexural, splitting tensile, and shear strengths of FRCs are among the most important attributes, which have been discussed more extensively than other properties. The accurate prediction of these properties, which are required...
-
The methods of secure data transmission in the KNX system
PublikacjaThe article presents the demands concerning data security in distributed building automation systems and shows the need for providing mechanisms of secure communication in the KNX system. Three different methods developed for KNX data protection are discussed: EIBsec, KNX Data Security and the author's method. Their properties are compared and potential areas of application are presented.
-
Low-Cost Data-Driven Surrogate Modeling of Antenna Structures by Constrained Sampling
PublikacjaFull-wave electromagnetic (EM) analysis has become one of the major design tools for contemporary antenna structures. Although reliable, it is computationally expensive which makes automated simulation-driven antenna design (e.g., parametric optimization) difficult. This difficulty can be alleviated by utilization of fast and accurate replacement models (surrogates). Unfortunately, conventional data-driven modeling of antennas...
-
Data processing methods for dynamic medical thermography.
PublikacjaArtykuł przedstawia zastosowanie nowej metody syntezy obrazów w termografii dla potrzeb opisu ilościowego właściwości termicznych tkanek. Opis taki umożliwia różnicowanie przypadków medycznych. Metodę zastosowania dla licznych pomiarów fantomowych i in vitro w eksperymentach na zwierzętach (świnia domowa). Przedstawiono i omówiono rezultaty prac.
-
Application of mechanistic and data-driven models for nitrogen removal in wastewater treatment systems
PublikacjaIn this dissertation, the application of mechanistic and data-driven models in nitrogen removal systems including nitrification and deammonification processes was evaluated. In particular, the influential parameters on the activity of the Nitrospira activity were assessed using response surface methodology (RSM). Various long-term biomass washout experiments were operated in two parallel sequencing batch reactor (SBR) with a different...
-
Geoscientific Instrumentation Methods and Data Systems
Czasopisma -
Data-driven, probabilistic model for attainable speed for ships approaching Gdańsk harbour
PublikacjaThe growing demand for maritime transportation leads to increased traffic in ports. From this arises the need to observe the consequences of the specific speed ships reach when approaching seaports. However, usually the analyzed cases refer only to the statistical evaluation of the studied phenomenon or to the empirical modelling, ignoring the mutual influence of variables such as ship type, length or weather conditions. In this...
-
A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine
PublikacjaRNA protein interactions (RPI) play a pivotal role in the regulation of various biological processes. Experimental validation of RPI has been time-consuming, paving the way for computational prediction methods. The major limiting factor of these methods has been the accuracy and confidence of the predictions, and our in-house experiments show that they fail to accurately predict RPI involving short RNA sequences such as TERRA RNA....
-
Data-Driven Surrogate-Assisted Optimization of Metamaterial-Based Filtenna Using Deep Learning
PublikacjaIn this work, a computationally efficient method based on data driven surrogate models is pro-posed for the design optimization procedure of a Frequency Selective Surface (FSS)-based filtering antenna (Filtenna). A Filtenna acts as a as module that simultaneously pre-filters unwanted sig-nals, and enhances the desired signals at the operating frequency. However, due to a typically large number of design variables of FSS unit elements,...
-
Buried Object Characterization by Data-Driven Surrogates and Regression-Enabled Hyperbolic Signature Extraction
PublikacjaThis work addresses artificial-intelligence-based buried object characterization using FDTD-based electromagnetic simulation toolbox of a Ground Penetrating Radar (GPR) to generate B-scan data. In data collection, FDTD-based simulation tool, gprMax is used. The task is to estimate geophysical parameters of a cylindrical shape object of various radii, buried at different positions in the dry soil medium simultaneously and independently...
-
Towards High-Value Datasets Determination for Data-Driven Development: A Systematic Literature Review
PublikacjaOpen government data (OGD) is seen as a political and socio-economic phenomenon that promises to promote civic engagement and stimulate public sector innovations in various areas of public life. To bring the expected benefits, data must be reused and transformed into value-added products or services. This, in turn, sets another precondition for data that are expected to not only be available and comply with open data principles,...
-
A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine
Publikacja -
Methods of trend removal in electrochemical noise data – overview
PublikacjaIn this paper we shall review popular methods of trend removal from electrochemical noise time records. The basic principles of operation of the six most popular methods are explained. The proposed methods are: high - pass filtering, Moving Average Removal, polynomial detrending, wavelet detrending, Empirical Mode Decomposition and Variational Mode Decomposition. Estimation of trend removal quality...
-
Fast multi-objective optimization of antenna structures by means of data-driven surrogates and dimensionality reduction
PublikacjaDesign of contemporary antenna structures needs to account for several and often conflicting objectives. These are pertinent to both electrical and field properties of the antenna but also its geometry (e.g., footprint minimization). For practical reasons, especially to facilitate efficient optimization, single-objective formulations are most often employed, through either a priori preference articulation, objective aggregation,...
-
Buried Object Characterization Using Ground Penetrating Radar Assisted by Data-Driven Surrogate-Models
PublikacjaThis work addresses artificial-intelligence-based buried object characterization using 3-D full-wave electromagnetic simulations of a ground penetrating radar (GPR). The task is to characterize cylindrical shape, perfectly electric conductor (PEC) object buried in various dispersive soil media, and in different positions. The main contributions of this work are (i) development of a fast and accurate data driven surrogate modeling...
-
Methods of data extraction from sub-bottom profiler's signal
PublikacjaData obtain during sounding Gdansk Bay with SES-2000 Standard parametric sub-bottom profiler has two types of information: envelope and pure signal. First is used to plot echograms in real time and contain envelope of echo. The second one is stored during sounding and can be processed after recording data. Comparison of results will be shown and discussed. First step in investigation was proper configuration of small measurement...
-
METHODS FOR THE IDENTIFICATION OF CYBER RISKS: AN ANALYSIS BASED ON PATENT DATA
Publikacja -
Data-driven models for fault detection using kernel pca:a water distribution system case study
PublikacjaKernel Principal Component Analysis (KPCA), an example of machine learning, can be considered a non-linear extension of the PCA method. While various applications of KPCA are known, this paper explores the possibility to use it for building a data-driven model of a non-linear system-the water distribution system of the Chojnice town (Poland). This model is utilised for fault detection with the emphasis on water leakage detection....
-
Identification of High-Value Dataset determinants: is there a silver bullet for efficient sustainability-oriented data-driven development?
PublikacjaOpen Government Data (OGD) are seen as one of the trends that has the potential to benefit the economy, improve the quality, efficiency, and transparency of public administration, and change the lives of citizens, and the society as a whole facilitating efficient sustainability-oriented data-driven services. However, the quick achievement of these benefits is closely related to the “value” of the OGD, i.e., how useful, and reusable...
-
Reliable data-driven modeling of high-frequency structures by means of nested kriging with enhanced design of experiments
PublikacjaData-driven (or approximation) surrogate models have been gaining popularity in many areas of engineering and science, including high-frequency electronics. They are attractive as a way of alleviating the difficulties pertinent to high computational cost of evaluating full-wave electromagnetic (EM) simulation models of microwave, antenna, and integrated photonic components and devices. Carrying out design tasks that involve massive...
-
Data-driven models for fault detection using kernel PCA: A water distribution system case study
Publikacja -
O-43 Data-driven selection of active iEEG channels during verbal memory task performance
Publikacja -
Influence of input data on airflow network accuracy in residential buildings with natural wind - and stack - driven ventilation.
PublikacjaW artykule omówiono wpływ danych wejściowych na dokładność modelu przepływu sieciowego powietrza w budynkach mieszkalnych z naturalną i kominową wentylacją. Zastosowano połączony model AFN-BES. Wyniki numeryczne omówiono dla 8 różnych przypadków z różnymi danymi ciśnienia wiatru. Wyniki pokazały, że ogromny wpływ danych wejściowych dotyczących ciśnienia wiatru na wyniki numeryczne.
-
Analysis of GNSS, Hydroacoustic and Optoelectronic Data Integration Methods Used in Hydrography
PublikacjaThe integration of geospatial data in hydrography, performed using different measurement systems, involves combining several study results to provide a comprehensive analysis. Each of the hydroacoustic and optoelectronic systems is characterised by a different spatial reference system and the method for technical implementation of the measurement. Therefore, the integration of hydrographic data requires that problems in selected...
-
General concept of reduction process for big data obtained by interferometric methods
PublikacjaInterferometric sonar systems apply the phase content of the sonar signal to measure the angle of a wave front returned from the seafloor or from a target. It collect a big data – datasets that are so large or complex that traditional data processing application software is inadequate to deal with them. The recording a large number of data is associated with the difficulty of their efficient use. So data have to be reduced. The main...
-
Study of data scheduling methods in the WiMAX Mobile metropolitan area networks
PublikacjaThe paper discusses basic assumptions of the WiMAX Mobile system. It also presents and analyses the results of simulation tests run for selected data scheduling methods and subcarrier allocation. Based on the test results, the authors have prepared a comparative analysis of two popular data scheduling methods, i.e. WRR and PF, and their own method CDFQ which uses information about the current channel situation for the queuing processes...
-
Reconstruction Methods for 3D Underwater Objects Using Point Cloud Data
PublikacjaExisting methods for visualizing underwater objects in three dimensions are usually based on displaying the imaged objects either as unorganised point sets or in the form of edges connecting the points in a trivial way. To allow the researcher to recognise more details and characteristic features of an investigated object, the visualization quality may be improved by transforming the unordered point clouds into higher order structures....
-
Comparison of Selected Reduction Methods of Bathymetric Data Obtained by Multibeam Echosounder
Publikacja -
Selection of SOM parameters for the needs of clusterization of data obtained by interferometric methods
Publikacja -
Low-cost data-driven modelling of microwave components using domain confinement and PCA-based dimensionality reduction
PublikacjaFast data-driven surrogate models can be employed as replacements of computationally demanding full-wave electromagnetic simulations to facilitate the microwave design procedures. Unfortunately, practical application of surrogate modelling is often hindered by the curse of dimensionality and/or considerable nonlinearity of the component characteristics. This paper proposes a simple yet reliable approach to cost-efficient modelling...
-
Fast multi-objective design optimization of microwave and antenna structures using data-driven surrogates and domain segmentation
PublikacjaPurpose Strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup are investigated. Design/methodology/approach Formulation of the multi-objective design problem oriented towards execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploit variable fidelity modeling, physics- and...
-
A Review of Emotion Recognition Methods Based on Data Acquired via Smartphone Sensors
PublikacjaIn recent years, emotion recognition algorithms have achieved high efficiency, allowing the development of various affective and affect-aware applications. This advancement has taken place mainly in the environment of personal computers offering the appropriate hardware and sufficient power to process complex data from video, audio, and other channels. However, the increase in computing and communication capabilities of smartphones,...
-
Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data
PublikacjaThis paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost...
-
An application of advanced data processing methods to response analysis of electrocatalytic gas sensor
PublikacjaPrzedstawiono stosowane dotychczas oraz zaproponowano nowe metody analizy odpowiedzi czujników elektrokatalitycznych. Porównano ich właściwości.
-
The image of the City on social media: A comparative study using “Big Data” and “Small Data” methods in the Tri-City Region in Poland
Publikacja“The Image of the City” by Kevin Lynch is a landmark planning theory of lasting influence; its scientific rigor and relevance in the digital age were in dispute. The rise of social media and other digital technologies offers new opportunities to study the perception of urban environments. Questions remain as to whether social media analytics can provide a reliable measure of perceived city images? If yes, what implication does...
-
Analysis of Transformation Methods of Hydroacoustic and Optoelectronic Data Based on the Tombolo Measurement Campaign in Sopot
PublikacjaMeasurements in the coastal zone are carried out using various methods, including Global Navigation Satellite Systems (GNSS), hydroacoustic and optoelectronic methods. Therefore, it is necessary to develop coordinate transformation models that will enable the conversion of data from the land and marine parts to one coordinate system. The article presents selected issues related to the integration of geodetic and hydrographic data....
-
Thresholding Methods for Reduction in Data Processing Errors in the Laser-Textured Surface Topography Measurements
Publikacja -
Analysis of Transformation Methods of Hydroacoustic and Optoelectronic Data Based on the Tombolo Measurement Campaign in Sopot
Publikacja -
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publikacja3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...