Filters
total: 514
filtered: 439
Search results for: deep convolutional neural network
-
Artificial neural network controller for underwater ship hull operation robot.
PublicationZaproponowano model matematyczny pojazdu podwodnego, który w uproszczonej wersji spełnia warunki dynamiki odpowiadające głowicy roboczej podwodnego robota. Uwzględniono niektóre czynniki oddziałujące na ruch podwodnej głowicy roboczej, jak np. gęstość wody oraz siły odśrodkowe i wypornościowe. Przedstawiono układ sterowania, w którym zastosowano regulator oparty na bazie sieci neuronowych, za pomocą którego można sterować...
-
On thermal and Flow Expert Systems Based on Artificial Neural Network (ANN)
PublicationZaprezentowano możliwość realizacji jednego z zadań systemów eksperckich, polegającego na określaniu rozmiaru eksploatacyjnej degradacji parametrów geometrycznych układów łopatkowych turbin. Dyskusję przeprowadzono w oparciu o zastosowanie wybranego typu sztucznej sieci neuronowej (SSN). Badano jakość i dokładność polegającą na dobrej identyfikacji rozmiaru degradacji przez tę wybraną SSN wykrywającą rozmiar degradacji geometrycznej....
-
Neural Network Application for Recognition of Geometry Degradation of Power Cycle Components
PublicationPrzedyskutowano problem rozpoznawania degradacji geometrycznej. Skuteczne zastosowanie wybranego typu sieci neuronowej (SSN) jest prezentowane w referacie. SSN wykrywająca typy degradacji geometrycznej wykazała wysoką jakość. Pokazano pewną możliwość ekstrapolacji takich SSN. Pokazano możliwość wykrywania typów degradacji geometrycznej nawet w przypadku pozyskiwania niepełnych danych pomiarowych.
-
Accurate Modeling of Frequency Selective Surfaces Using Fully-Connected Regression Model with Automated Architecture Determination and Parameter Selection Based on Bayesian Optimization
PublicationSurrogate modeling has become an important tool in the design of high-frequency structures. Although full-wave electromagnetic (EM) simulation tools provide an accurate account for the circuit characteristics and performance, they entail considerable computational expenditures. Replacing EM analysis by fast surrogates provides a way to accelerate the design procedures. Unfortunately, modeling of microwave passives is a challenging...
-
Leveraging Training Strategies of Artificial Neural Network for Classification of Multiday Electromyography Signals
Publication -
Comparison of Selected Neural Network Models Used for Automatic Liver Tumor Segmentation
PublicationAutomatic and accurate segmentation of liver tumors is crucial for the diagnosis and treatment of hepatocellular carcinoma or metastases. However, the task remains challenging due to imprecise boundaries and significant variations in the shape, size, and location of tumors. The present study focuses on tumor segmentation as a more critical aspect from a medical perspective, compared to liver parenchyma segmentation, which is the...
-
Application of fuzzy neural network for supporting measurements and control in a wastewater treatment plant
PublicationOczyszczanie ścieków jest jednym z ważniejszych aspektów ochrony środowiska. Nowoczesne systemy kontroli w oczyszczalniach ścieków pozwalają na poprawę jakości procesu oczyszczania redukując jednocześnie koszty. Systemy kontroli i optymalizacji jakie odkilku lat opracowuje się dla oczyszczalni ścieków, bazują zazwyczaj na skomplikowanych modelach matematycznych. Kluczowym problemem w zastosowaniu tych systemów jest duża liczba...
-
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublicationThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...
-
The Effectiveness of Using a Pretrained Deep Learning Neural Networks for Object Classification in Underwater Video
Publication -
Energy Management for PV Powered Hybrid Storage System in Electric Vehicles Using Artificial Neural Network and Aquila Optimizer Algorithm
PublicationIn an electric vehicle (EV), using more than one energy source often provides a safe ride without concerns about range. EVs are powered by photovoltaic (PV), battery, and ultracapacitor (UC) systems. The overall results of this arrangement are an increase in travel distance; a reduction in battery size; improved reaction, especially under overload; and an extension of battery life. Improved results allow the energy to be used efficiently,...
-
Taking decisions in the diagnostic intelligent systems on the basis information from an artificial neural network
Publication -
Artificial Neural Network (ANN)-Based Voltage Stability Prediction of Test Microgrid Grid
Publication -
Fetal Brain Imaging: A Composite Neural Network Approach for Keyframe Detection in Ultrasound Videos
Publication -
An application of neural network for Structural Health Monitoring of an adaptive wing with an array of FBG sensors
PublicationW pracy przedstwiono możliwości zastoswania sieci czujników FBG i sztucznych sieci neuronowych do detekcji uszkodzeń w poszyciu adaptacyjnego skrzydła.
-
Neural network based control system architecture proposal for underwatership hull cleaning robot.
PublicationPrzedstawiono model matematyczny podwodnej głowicy roboczej, oraz określono metodę jej pozycjonowania i orientacji w lokalnym środowisku. Zaproponowano architekturę układu sterowania, opartego na bazie sieci neuronowych, za pomocą którego można sterować podwodnym robotem, przeznaczonym do czyszczenia burt statku.
-
Selection of an artificial pre-training neural network for the classification of inland vessels based on their images
PublicationArtificial neural networks (ANN) are the most commonly used algorithms for image classification problems. An image classifier takes an image or video as input and classifies it into one of the possible categories that it was trained to identify. They are applied in various areas such as security, defense, healthcare, biology, forensics, communication, etc. There is no need to create one’s own ANN because there are several pre-trained...
-
Activation maps of convolutional neural networks as a tool for brain degeneration tracking in early diagnosis of dementia in Parkinson's disease based on magnetic resonance imaging
Publication -
Wind-wave variability in a shallow tidal sea—Spectral modelling combined with neural network methods
Publication -
Neural network simulator's application to reference performance determination of turbine blading in the heat-flow diagnostics.
PublicationIn the paper, the possibility of application of artificial neural networks to perform the fluid flow calculations through both damaged and undamaged turbine blading was investigated. Preliminary results are presented and show the potentiality of further development of the method for the purpose of heat-flow diagnostics.
-
Detection of Alzheimer's disease using Otsu thresholding with tunicate swarm algorithm and deep belief network
PublicationIntroduction: Alzheimer’s Disease (AD) is a degenerative brain disorder characterized by cognitive and memory dysfunctions. The early detection of AD is necessary to reduce the mortality rate through slowing down its progression. The prevention and detection of AD is the emerging research topic for many researchers. The structural Magnetic Resonance Imaging (sMRI) is an extensively used imaging technique in detection of AD, because...
-
<title>Recurrent neural network application to image filtering: 2-D Kalman filtering approach</title>
Publication -
Designing of an effective structure of system for the maintenance of a technical object with the using information from an artificial neural network
Publication -
Modelling of a medium-term dynamics in a shallow tidal sea, based on combined physical and neural network methods
Publication -
Safety assessment of ships in critical conditions using a knowledge-based system for design and neural network system
PublicationW pracy opisano wybrane elementy metody oceny bezpieczeństwa statków w stanie uszkodzonym, ukierunkowanej na ocenę osiągów statku i ocenę ryzyka. Metoda analizy osiągów i zachowania się statku w stanie uszkodzonym została wykorzystana do oceny charakterystyk hydromechanicznych statku uszkodzonego. Do oceny ryzyka wykorzystano elementy metodyki Formalnej Oceny Bezpieczeństwa. System ekspertowy został wykorzystany do analziy podziału...
-
Food Classification from Images Using a Neural Network Based Approach with NVIDIA Volta and Pascal GPUs
PublicationIn the paper we investigate the problem of food classification from images, for the Food-101 dataset extended with 31 additional food classes from Polish cuisine. We adopted transfer learning and firstly measured training times for models such as MobileNet, MobileNetV2, ResNet50, ResNet50V2, ResNet101, ResNet101V2, InceptionV3, InceptionResNetV2, Xception, NasNetMobile and DenseNet, for systems with NVIDIA Tesla V100 (Volta) and...
-
Big Data from Sensor Network via Internet of Things to Edge Deep Learning for Smart City
PublicationData from a physical world is sampled by sensor networks, and then streams of Big Data are sent to cloud hosts to support decision making by deep learning software. In a smart city, some tasks may be assigned to smart devices of the Internet of Things for performing edge computing. Besides, a part of workload of calculations can be transferred to the cloud hosts. This paper proposes benchmarks for division tasks between an edge...
-
Mathematical modeling and prediction of pit to crack transition under cyclic thermal load using artificial neural network
PublicationThe formation of pitting is a major problem in most metals, which is caused by extremely localized corrosion that creates small holes in metal and subsequently, it changes into cracks under mechanical load, thermo-mechanical stress, and corrosion process factors. This research aims to study pit to crack transition phenomenon of steel boiler heat tubes under cyclic thermal load, and mathematical modeling...
-
Optimal Selection of Input Features and an Acompanying Neural Network Structure for the Classification Purposes - Skin Lesions Case Study
Publication -
A review on application of artificial neural network (ANN) for performance and emission characteristics of diesel engine fueled with biodiesel-based fuels
PublicationBiodiesel has been emerging as a potential and promising biofuel for the strategy of reducing toxic emissions and improving engine performance. Computational methods aiming to offer numerical solutions were inevitable as a study methodology which was sometimes considered the only practical method. Artificial neural networks (ANN) were data-processing systems, which were used to tackle many issues in engineering and science, especially...
-
A new analyzer based on pellistor sensor with neural network data postprocessing for measurement of hydrocarbons in lower explosive limit range
PublicationW pracy przedstawiono rezultaty pierwszego etapu badań nad nowym typem analizatora do oznaczania stężenia wodoru i lotnych węglowodorów w zakresie dolnej granicy wybuchowości. Analizator ten zbudowano w oparciu o pojedynczy czujnik pelistorowy z układem przetwarzania danych wykorzystującym sztuczną sieć neuronową.
-
Prediction of skin color, tanning and freckling from DNA in Polish population: linear regression, random forest and neural network approaches
Publication -
Artificial neural network model of hardness, porosity and cavitation erosion wear of APS deposited Al2O3 -13 wt% TiO2 coatings
Publication -
Application of Generalized Regression Neural Network and Gaussian Process Regression for Modelling Hybrid Micro-Electric Discharge Machining: A Comparative Study
Publication -
Recurrent Neural Network Based Adaptive Variable-Order Fractional PID Controller for Small Modular Reactor Thermal Power Control
PublicationThis paper presents the synthesis of an adaptive PID type controller in which the variable-order fractional operators are used. Due to the implementation difficulties of fractional order operators, both with a fixed and variable order, on digital control platforms caused by the requirement of infinite memory resources, the fractional operators that are part of the discussed controller were approximated by recurrent neural networks...
-
Application of PSO-artificial neural network and response surface methodology for removal of methylene blue using silver nanoparticles from water samples
Publication -
Particle swarm optimization–artificial neural network modeling and optimization of leachable zinc from flour samples by miniaturized homogenous liquid–liquid microextraction
Publication -
Zastosowanie algorytmu ewolucyjnego do uczenia neuronowego regulatora napięcia generatora synchronicznego. Evolutionary algorithm for training a neural network of synchronous generator voltage controller
PublicationNajpopularniejsza metoda uczenia wielowarstwowych sieci neuronowych -metoda wstecznej propagacji błędu - charakteryzuje się słabą efektywnością. Z tego względu podejmowane są próby stosowania innych metod do uczenia sieci. W pracy przedstawiono wyniki uczenia sieci realizującej regulator neuronowy, za pomocą algorytmu ewolucyjnego. Obliczenia symulacyjne potwierdziły dobrą zbieżność algorytmu ewolucyjnego w tym zastosowaniu.
-
Productivity Enhancement by Prediction of Liquid Steel Breakout during Continuous Casting Process in Manufacturing of Steel Slabs in Steel Plant Using Artificial Neural Network with Backpropagation Algorithms
Publication -
Comparative study of neural networks used in modeling and control of dynamic systems
PublicationIn this paper, a diagonal recurrent neural network that contains two recurrent weights in the hidden layer is proposed for the designing of a synchronous generator control system. To demonstrate the superiority of the proposed neural network, a comparative study of performances, with two other neural network (1_DRNN) and the proposed second-order diagonal recurrent neural network (2_DRNN). Moreover, to confirm the superiority...
-
A Selection of Starting Points for Iterative Position Estimation Algorithms Using Feedforward Neural Networks
PublicationThis article proposes the use of a feedforward neural network (FNN) to select the starting point for the first iteration in well-known iterative location estimation algorithms, with the research objective of finding the minimum size of a neural network that allows iterative position estimation algorithms to converge in an example positioning network. The selected algorithms for iterative position estimation, the structure of the...
-
Performance improvement of NN based RTLS by customization of NN structure - heuristic approach
PublicationThe purpose of this research is to improve performance of the Hybrid Scene Analysis – Neural Network indoor localization algorithm applied in Real-time Locating System, RTLS. A properly customized structure of Neural Network and training algorithms for specific operating environment will enhance the system’s performance in terms of localization accuracy and precision. Due to nonlinearity and model complexity, a heuristic analysis...
-
An Automated Method for Biometric Handwritten Signature Authentication Employing Neural Networks
PublicationHandwriting biometrics applications in e-Security and e-Health are addressed in the course of the conducted research. An automated graphomotor analysis method for the dynamic electronic representation of the handwritten signature authentication was researched. The developed algorithms are based on dynamic analysis of electronically handwritten signatures employing neural networks. The signatures were acquired with the use of the...
-
Neural modelling of dynamic systems with time delays based on an adjusted NEAT algorithm
PublicationA problem related to the development of an algorithm designed to find an architecture of artificial neural network used for black-box modelling of dynamic systems with time delays has been addressed in this paper. The proposed algorithm is based on a well-known NeuroEvolution of Augmenting Topologies (NEAT) algorithm. The NEAT algorithm has been adjusted by allowing additional connections within an artificial neural network and...
-
A survey of neural networks usage for intrusion detection systems
PublicationIn recent years, advancements in the field of the artificial intelligence (AI) gained a huge momentum due to the worldwide appliance of this technology by the industry. One of the crucial areas of AI are neural networks (NN), which enable commer‐ cial utilization of functionalities previously not accessible by usage of computers. Intrusion detection system (IDS) presents one of the domains in which neural networks are widely tested...
-
Neural Approximators for Variable-Order Fractional Calculus Operators (VO-FC)
PublicationThe paper presents research on the approximation of variable-order fractional operators by recurrent neural networks. The research focuses on two basic variable-order fractional operators, i.e., integrator and differentiator. The study includes variations of the order of each fractional operator. The recurrent neural network architecture based on GRU (Gated Recurrent Unit) cells functioned as a neural approximation for selected...
-
Dynamically positioned ship steering making use of backstepping method and artificial neural networks
PublicationThe article discusses the issue of designing a dynamic ship positioning system making use of the adaptive vectorial backstepping method and RBF type arti cial neural networks. In the article, the backstepping controller is used to determine control laws and neural network weight adaptation laws. e arti cial neural network is applied at each time instant to approximate nonlinear functions containing parametric uncertainties....
-
Ship Resistance Prediction with Artificial Neural Networks
PublicationThe paper is dedicated to a new method of ship’s resistance prediction using Artificial Neural Network (ANN). In the initial stage selected ships parameters are prepared to be used as a training and validation sets. Next step is to verify several network structures and to determine parameters with the highest influence on the result resistance. Finally, other parameters expected to impact the resistance are proposed. The research utilizes...
-
Extending touch-less interaction with smart glasses by implementing EMG module
PublicationIn this paper we propose to use temporal muscle contraction to perform certain actions. Method: The set of muscle contractions corresponding to one of three actions including “single-click”, “double-click” “click-n-hold” and “non-action” were recorded. After recording certain amount of signals, the set of five parameters was calculated. These parameters served as an input matrix for the neural network. Two-layer feedforward neural...
-
Supply current signal and artificial neural networks in the induction motor bearings diagnostics
PublicationThis paper contains research results of the diagnostics of induction motor bearings based on measurement of the supply current with usage of artificial neural networks. Bearing failure amount is greater than 40% of all engine failures, which makes their damage-free operation crucial. Tests were performed on motors with intentionally made bearings defects. Chapter 2 introduces the concept of artificial neural networks. It presents...
-
INFLUENCE OF DATA NORMALIZATION ON THE EFFECTIVENESS OF NEURAL NETWORKS APPLIED TO CLASSIFICATION OF PAVEMENT CONDITIONS – CASE STUDY
PublicationIn recent years automatic classification employing machine learning seems to be in high demand for tele-informatic-based solutions. An example of such solutions are intelligent transportation systems (ITS), in which various factors are taken into account. The subject of the study presented is the impact of data pre-processing and normalization on the accuracy and training effectiveness of artificial neural networks in the case...