Filters
total: 500
filtered: 445
Search results for: training methods
-
Reduced-Cost Two-Level Surrogate Antenna Modeling using Domain Confinement and Response Features
PublicationElectromagnetic (EM) simulation tools have become indispensable in the design of contemporary antennas. Still, the major setback of EM-driven design is the associated computational overhead. This is because a single full-wave simulation may take from dozens of seconds up to several hours, thus, the cost of solving design tasks that involve multiple EM analyses may turn unmanageable. This is where faster system representations (surrogates)...
-
Toward Sustainable Development: Exploring the Value and Benefits of Digital Twins
PublicationThe complexity and number of data streams generated by internal processes exceed the capabilities of most current simulation environments. Consequently, there is a need for the development of more advanced solutions that can handle any number of simultaneous simulations. One of the most promising ideas to address these and other challenges is the concept of a Digital Twin (DT), which refers to a digital representation or a virtual...
-
Graph Neural Networks and Structural Information on Ionic Liquids: A Cheminformatics Study on Molecular Physicochemical Property Prediction
PublicationIonic liquids (ILs) provide a promising solution in many industrial applications, such as solvents, absorbents, electrolytes, catalysts, lubricants, and many others. However, due to the enormous variety of their structures, uncovering or designing those with optimal attributes requires expensive and exhaustive simulations and experiments. For these reasons, searching for an efficient theoretical tool for finding the relationship...
-
Marking the Allophones Boundaries Based on the DTW Algorithm
PublicationThe paper presents an approach to marking the boundaries of allophones in the speech signal based on the Dynamic Time Warping (DTW) algorithm. Setting and marking of allophones boundaries in continuous speech is a difficult issue due to the mutual influence of adjacent phonemes on each other. It is this neighborhood on the one hand that creates variants of phonemes that is allophones, and on the other hand it affects that the border...
-
Intermolecular Interactions as a Measure of Dapsone Solubility in Neat Solvents and Binary Solvent Mixtures
PublicationDapsone is an effective antibacterial drug used to treat a variety of conditions. However, the aqueous solubility of this drug is limited, as is its permeability. This study expands the available solubility data pool for dapsone by measuring its solubility in several pure organic solvents: N-methyl-2-pyrrolidone (CAS: 872-50-4), dimethyl sulfoxide (CAS: 67-68-5), 4-formylmorpholine (CAS: 4394-85-8), tetraethylene pentamine (CAS:...
-
How to teach architecture? – Remarks on the edge of Polish transformation processes after 1989
PublicationThe political changes in Poland after 1989 have resulted in a whole range of dynamic processes including the transformation of space. Until that time the established institutional framework for spatial, urban and architectural planning policy was based on uniform provisions of the so-called planned economy. The same applied to the training of architects, which was based on a unified profile of education provided at the state’s...
-
Computationally-Efficient Statistical Design and Yield Optimization of Resonator-Based Notch Filters Using Feature-Based Surrogates
PublicationModern microwave devices are designed to fulfill stringent requirements pertaining to electrical performance, which requires, among others, a meticulous tuning of their geometry parameters. When moving up in frequency, physical dimensions of passive microwave circuits become smaller, making the system performance increasingly susceptible to manufacturing tolerances. In particular, inherent inaccuracy of fabrication processes affect...
-
A Parallel Corpus-Based Approach to the Crime Event Extraction for Low-Resource Languages
PublicationThese days, a lot of crime-related events take place all over the world. Most of them are reported in news portals and social media. Crime-related event extraction from the published texts can allow monitoring, analysis, and comparison of police or criminal activities in different countries or regions. Existing approaches to event extraction mainly suggest processing texts in English, French, Chinese, and some other resource-rich...
-
Enhancing Renal Tumor Detection: Leveraging Artificial Neural Networks in Computed Tomography Analysis
PublicationRenal cell carcinoma is one of the most common cancers in Europe, with a total incidence rate of 18.4 cases per 100 000 population. There is currently significant overdiagnosis (11% to 30.9%) at times of planned surgery based on radiological studies. The purpose of this study was to create an artificial neural network (ANN) solution based on computed tomography (CT) images as an additional tool to improve the differentiation of...
-
Heavy Duty Vehicle Fuel Consumption Modelling Based on Exploitation Data by Using Artificial Neural Networks
PublicationOne of the ways to improve the fuel economy of heavy duty trucks is to operate the combustion engine in its most efficient operating points. To do that, a mathematical model of the engine is required, which shows the relations between engine speed, torque and fuel consumption in transient states. In this paper, easy accessible exploitation data collected via CAN bus of the heavy duty truck were used to obtain a model of a diesel...
-
Variable‐fidelity modeling of antenna input characteristics using domain confinement and two‐stage Gaussian process regression surrogates
PublicationThe major bottleneck of electromagnetic (EM)-driven antenna design is the high CPU cost of massive simulations required by parametric optimization, uncertainty quantification, or robust design procedures. Fast surrogate models may be employed to mitigate this issue to a certain extent. Unfortunately, the curse of dimensionality is a serious limiting factor, hindering the construction of conventional data-driven models valid over...
-
Employing Subjective Tests and Deep Learning for Discovering the Relationship between Personality Types and Preferred Music Genres
PublicationThe purpose of this research is two-fold: (a) to explore the relationship between the listeners’ personality trait, i.e., extraverts and introverts and their preferred music genres, and (b) to predict the personality trait of potential listeners on the basis of a musical excerpt by employing several classification algorithms. We assume that this may help match songs according to the listener’s personality in social music networks....
-
Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study
PublicationThe variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups...
-
Autonomous pick-and-place system based on multiple 3Dsensors and deep learning
PublicationGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Autonomous Perception and Grasp Generation Based on Multiple 3D Sensors and Deep Learning
PublicationGrasping objects and manipulating them is the main way the robot interacts with its environment. However, for robots to operate in a dynamic environment, a system for determining the gripping position for objects in the scene is also required. For this purpose, neural networks segmenting the point cloud are usually applied. However, training such networks is very complex and their results are unsatisfactory. Therefore, we propose...
-
Development of an AI-based audiogram classification method for patient referral
PublicationHearing loss is one of the most significant sensory disabilities. It can have various negative effects on a person's quality of life, ranging from impeded school and academic performance to total social isolation in severe cases. It is therefore vital that early symptoms of hearing loss are diagnosed quickly and accurately. Audiology tests are commonly performed with the use of tonal audiometry, which measures a patient's hearing...
-
Global Design Optimization of Microwave Circuits Using Response Feature Inverse Surrogates
PublicationModern microwave design has become heavily reliant on full-wave electromagnetic (EM) simulation tools, which are necessary for accurate evaluation of microwave components. Consequently, it is also indispensable for their development, especially the adjustment of geometry parameters, oriented towards performance improvement. However, EM-driven optimization procedures incur considerable computational expenses, which may become impractical...
-
Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor
PublicationNitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, model predictions...
-
The congruence of mental models in entrepreneurial teams – implications for performance and satisfaction in teams operating in an emerging economy
PublicationPurpose – The paper aims to explore the relationship between the congruence of mental models held by the members of entrepreneurial teams operating in an emerging economy (Poland) and entrepreneurial outcomes (performance and satisfaction). Design/methodology/approach – The data obtained from 18 nascent and 20 established entrepreneurial teams was analysed to answer hypotheses. The research was quantitative and was conducted using...
-
Low-Cost Modeling of Microwave Components by Means of Two-Stage Inverse/Forward Surrogates and Domain Confinement
PublicationFull-wave electromagnetic (EM) analysis is one of the most important tools in the design of modern microwave components and systems. EM simulation permits reliable evaluation of circuits at the presence of cross-coupling effects or substrate anisotropy, as well as for accounting for interactions with the immediate environment. However, repetitive analyses required by EM-driven procedures, such as parametric optimization or statistical...
-
Embedded gas sensing setup for air samples analysis
PublicationThis paper describes a measurement setup (eNose) designed to analyze air samples containing various volatile organic compounds (VOCs). The setup utilizes a set of resistive gas sensors of divergent gas selectivity and sensitivity. Some of the applied sensors are commercially available and were proposed recently to reduce their consumed energy. The sensors detect various VOCs at sensitivities determined by metal oxide sensors’ technology...
-
A Mammography Data Management Application for Federated Learning
PublicationThis study aimed to develop and assess an application designed to enhance the management of a local client database consisting of mammographic images with a focus on ensuring that images are suitably and uniformly prepared for federated learning applications. The application supports a comprehensive approach, starting with a versatile image-loading function that supports DICOM files from various medical imaging devices and settings....
-
Occupational Health and Safety in the World of Digitalizing Work
PublicationWhen employees have a sense of work well-being and safety, so shall the employer organization thrive. In the digitized work content, also called the Forth Industrial Revolution or Industry 4.0, employer organizations prioritize faster or efficient production with ever more precise decision-making, entirely and workflow for task accomplishment of which employees and employer organizations are learning “on-the-go” how to manage the...
-
Pealizacija inicjatiw wostocznogo partnerstwa w Azerbajdżane
PublicationAzerbaijan established political relations with the EU during the implementation of TACIS Programme projects and signed the Partnership and Cooperation Agreement with the EU in 1996. It joined the European Neighbourhood Policy in 2004 and the Eastern Partnership programme in 2009. Despite the sceptical attitude taken by Azerbaijan's government towards the Eastern Partnership initiative, the EU earmarked further funds for Azerbaijan for 2011 – 2014 as part of the European Neighbourhood and Partnership Instrument. During the third Eastern Partnership summit in Vilnius in November 2013, Azerbaijan signed only an agreement concerning visa facilitations and readmission. However, it also undertook certain measures as part of the five Eastern Partnership initiatives. In the framework of the Integrated Border Management Programme, Azerbaijan implemented projects connected with improving the access of resettled people to the judicial system, creation of electronic border control systems, social protection, increasing public awareness to eliminate domestic violence, improving assimilation of asylum - seekers and immigrants, and supporting occupational health organisations. Activities aimed at supporting SMEs included training for entrepreneurs, promotional conferences and loans to the SME sector. Recommendations of the initiative promoting the creation of regional electrical and renewable energy markets were implemented by Azerbaijan in the form of 33 projects as part of the INOGATE Programme. With respect to environmental management, Azerbaijan developed a digital regional atlas of natural disasters, and with respect to natural disaster mitigation it planned population protection measures. Azerbaijan was ranked last but one in the evaluation presented in the annual report prepared by the EU. The transformation process in this country has been slow and illusory in certain aspects. Nevertheless, the EU has continued its Eastern Partnership initiative activities, allocating between EUR 252,000 and 308,000 for transformations in Azerbaijan
-
Expedited Yield Optimization of Narrow- and Multi-Band Antennas Using Performance-Driven Surrogates
PublicationUncertainty quantification is an important aspect of engineering design, also pertaining to the development and performance evaluation of antenna systems. Manufacturing tolerances as well as other types of uncertainties, related to material parameters (e.g., substrate permittivity) or operating conditions (e.g., bending) may affect the antenna characteristics. In the case of narrow- or multi-band antennas, this usually leads to...
-
The effects of relational and psychological capital on work engagement: the mediation of learning goal orientation
PublicationPurpose – This paper proposes a research model in which learning goal orientation (LGO) mediates the impacts of relational capital and psychological capital (PsyCap) on work engagement. Design/methodology/approach – Data obtained from 475 managers and employees in the manufacturing and service industries in Poland were utilized to assess the linkages given above. Common method variance was controlled by the unmeasured latent method...
-
Forecasting energy consumption and carbon dioxide emission of Vietnam by prognostic models based on explainable machine learning and time series
PublicationThis study assessed the usefulness of algorithms in estimating energy consumption and carbon dioxide emissions in Viet- nam, in which the training dataset was used to train the models linear regression, random forest, XGBoost, and AdaBoost, allowing them to comprehend the patterns and relationships between population, GDP, and carbon dioxide emissions, energy consumption. The results revealed that random forest, XGBoost, and AdaBoost...
-
OOA-modified Bi-LSTM network: An effective intrusion detection framework for IoT systems
PublicationCurrently, the Internet of Things (IoT) generates a huge amount of traffic data in communication and information technology. The diversification and integration of IoT applications and terminals make IoT vulnerable to intrusion attacks. Therefore, it is necessary to develop an efficient Intrusion Detection System (IDS) that guarantees the reliability, integrity, and security of IoT systems. The detection of intrusion is considered...
-
A Data-Driven Comparative Analysis of Machine-Learning Models for Familial Hypercholesterolemia Detection
PublicationThis study presents an assessment of familial hypercholesterolemia (FH) probability using different algorithms (CatBoost, XGBoost, Random Forest, SVM) and its ensembles, leveraging electronic health record data. The primary objective is to explore an enhanced method for estimating FH probability, surpassing the currently recommended Dutch Lipid Clinic Network (DLCN) Score. The models were trained using the largest Polish cohort...
-
Machine Learning-Based Wetland Vulnerability Assessment in the Sindh Province Ramsar Site Using Remote Sensing Data
PublicationWetlands provide vital ecological and socioeconomic services but face escalating pressures worldwide. This study undertakes an integrated spatiotemporal assessment of the multifaceted vulnerabilities shaping Khinjhir Lake, an ecologically significant wetland ecosystem in Pakistan, using advanced geospatial and machine learning techniques. Multi-temporal optical remote sensing data from 2000 to 2020 was analyzed through spectral...
-
Fast multi-objective design optimization of microwave and antenna structures using data-driven surrogates and domain segmentation
PublicationPurpose Strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup are investigated. Design/methodology/approach Formulation of the multi-objective design problem oriented towards execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploit variable fidelity modeling, physics- and...
-
Recent Advances in Accelerated Multi-Objective Design of High-Frequency Structures using Knowledge-Based Constrained Modeling Approach
PublicationDesign automation, including reliable optimization of engineering systems, is of paramount importance for both academia and industry. This includes the design of high-frequency structures (antennas, microwave circuits, integrated photonic components), where the appropriate adjustment of geometry and material parameters is crucial to meet stringent performance requirements dictated by practical applications. Realistic design has...
-
Expedited Yield-Driven Design of High-Frequency Structures by Kriging Surrogates in Confined Domains
PublicationUncertainty quantification is an important aspect of engineering design, also pertaining to the development and performance evaluation of high-frequency structures systems. Manufacturing tolerances as well as other types of uncertainties, related to material parameters (e.g., substrate permittivity) or operating conditions (e.g., bending) may affect the characteristics of antennas or microwave devices. For example, in the case...
-
Iterative Global Sensitivity Analysis Algorithm with Neural Network Surrogate Modeling
PublicationGlobal sensitivity analysis (GSA) is a method to quantify the effect of the input parameters on outputs of physics-based systems. Performing GSA can be challenging due to the combined effect of the high computational cost of each individual physics-based model, a large number of input parameters, and the need to perform repetitive model evaluations. To reduce this cost, neural networks (NNs) are used to replace the expensive physics-based...
-
Data-driven Models for Predicting Compressive Strength of 3D-printed Fiber-Reinforced Concrete using Interpretable Machine Learning Algorithms
Publication3D printing technology is growing swiftly in the construction sector due to its numerous benefits, such as intricate designs, quicker construction, waste reduction, environmental friendliness, cost savings, and enhanced safety. Nevertheless, optimizing the concrete mix for 3D printing is a challenging task due to the numerous factors involved, requiring extensive experimentation. Therefore, this study used three machine learning...
-
Optimising approach to designing kernel PCA model for diagnosis purposes with and without a priori known data reflecting faulty states
PublicationFault detection plays an important role in advanced control of complex dynamic systems since precise information about system condition enables efficient control. Data driven methods of fault detection give the chance to monitor the plant state purely based on gathered measurements. However, they especially nonlinear, still suffer from a lack of efficient and effective learning methods. In this paper we propose the two stages learning...
-
Voice command recognition using hybrid genetic algorithm
PublicationAbstract: Speech recognition is a process of converting the acoustic signal into a set of words, whereas voice command recognition consists in the correct identification of voice commands, usually single words. Voice command recognition systems are widely used in the military, control systems, electronic devices, such as cellular phones, or by people with disabilities (e.g., for controlling a wheelchair or operating a computer...
-
Preliminary study on icebreaking operation on the Middle and Lower Odra River
PublicationThe Odra-Vistula Flood Management Project (OVFMP) is implemented with the assistance of international financial institutions, including the International Bank for Reconstruction and Development and the Council of Europe Development Bank, as well as with the support of funding from the Cohesion Fund and the state budget. Aside from others, the objective of the OVFMP is to increase flood protection for people living in selected areas...
-
Exploring the approaches towards support of academic entrepreneurship: evidence from an emerging market
PublicationOver the past three decades, an exponentially growing body on elements and actors of the concept of an entrepreneurial university has emerged. Compared to its western European counterparts, however, the idea of the third role of the university has only recently been implemented in Central and Eastern European countries, and thus both research and entrepreneurial practice grapple with empirical results. In this paper, we attempt...
-
Is data management a new “digitisation”? A change of the role of librarians in the context of changing academic libraries’ tasks
PublicationAcademic libraries’ tasks have been evolving over the years. The changes have been stimulated by appearing of electronic resources, automated library systems, digital libraries and Open Access (OA) repositories. Librarians’ tasks and responsibilities in the academic environment have been evolving in accordance with new tasks they were expected to assume. A few years ago there was a discussion during which an attempt was made to...
-
Intercultural interactions at multinational corporations' workplace: Grounded theory.
Publicationenvironments is a new challenge for employees and managers. The aim of the paper is to analyze the social interactions in multicultural environments of multinational corporations (MNCs) as well as to propose a model of intercultural social interactions in MNCs’ specifi c context. Design/methodology/approach: The grounded theory approach was applied to create a model of intercultural interactions in MNCs. The data was obtained during...
-
CULTURAL DETERMINANTS OF EVIDENCE-BASED HUMAN RESOURCES MANAGEMENT: A CROSS-COUNTRY ANALYSIS
PublicationPurpose: This paper aims at providing comparative analysis of the influence of cultural determinants on the managers’ perceptions of human resources management practices, as a factor conditioning application of evidence-based management. Design/methodology/approach: This article presents the study of 121 managers in Poland, on their perception of HRM practices and analyses the consistency of findings with the Hofstede cultural...
-
Using LSTM networks to predict engine condition on large scale data processing framework
PublicationAs the Internet of Things technology is developing rapidly, companies have an ability to observe the health of engine components and constructed systems through collecting signals from sensors. According to output of IoT sensors, companies can build systems to predict the conditions of components. Practically the components are required to be maintained or replaced before the end of life in performing their assigned task. Predicting...
-
Using water sources extent during inundation as a reliable predictor for vegetation zonation in a natural wetland floodplain
PublicationDistinctive zones of inundation water during floods were shown to originate from different sources in some major floodplains around the world. Recent research showed that the zonation of water in rivers and floodplains is related to vegetation patterns. In spite of this, water source zones were not used for vegetation modeling due to difficulties in their delineation. In this study, we used simulation results of a fully-coupled...
-
A demand for innovation support in samll and medium-sized enterprises in the baltic sea region
Publicationthe aim of the expertise is to analyze the actual demand of smes from the baltic sea region for innovation support. the results of the conducted study can help formulate recommendations designed to increase innovation and competitiveness of smes in the baltic sea region in the future. research activities of this study include: the evaluation of innovation level of the baltic sea region enterprises (type and intensity of implemented...