Filters
total: 52
filtered: 47
Search results for: ENVIRONMENTAL REMEDIATION
-
Property-performance relationship of core-shell structured black TiO2 photocatalyst for environmental remediation
PublicationUnderstanding the relationship between the properties and performance of black titanium dioxide with core-shell structure (CSBT) for environmental remediation is crucial for improving its prospects in practical applications. In this study, CSBT was synthesized using a glycerol-assisted sol-gel approach. The effect of different water-to-glycerol ratios (W:G = 1:0, 9:1, 2:1, and 1:1) on the semiconducting and physicochemical properties...
-
Schottky Junction-Driven Photocatalytic Effect in Boron-Doped Diamond-Graphene Core–Shell Nanoarchitectures: An sp3/sp2 Framework for Environmental Remediation
PublicationSelf-formation of boron-doped diamond (BDD)-multilayer graphene (MLG) core–shell nanowalls (BDGNWs) via microwave plasma-enhanced chemical vapor deposition is systematically investigated. Here, the incorporation of nitrogen brings out the origin of MLG shells encapsulating the diamond core, resulting in unique sp3/sp2 hybridized frameworks. The evolution mechanism of the nanowall-like morphology with the BDD-MLG core–shell composition...
-
Experimental and DFT insights into an eco-friendly photocatalytic system toward environmental remediation and hydrogen generation based on AgInS2 quantum dots embedded on Bi2WO6
PublicationBismuth tungstate (Bi2WO6) can work as a photocatalyst but suffers from rapid recombination of photogenerated charge carriers. Herein, density functional theory (DFT) simulations revealed that the formation of a thermodynamically stable AgInS2(112)/Bi2WO6(010) heterojunction could promote charge separation and enhance the photoactivity of Bi2WO6. To confirm these theoretical predictions, a new type of photocatalysts in the form...
-
Enzyme-linked carbon nanotubes as biocatalytic tools to degrade and mitigate environmental pollutants
PublicationA wide array of organic compounds have been recognized as pollutants of high concern due to their controlled or uncontrolled presence in environmental matrices. The persistent prevalence of diverse organic pollutants, including pharmaceutical compounds, phenolic compounds, synthetic dyes, and other hazardous substances, necessitates robust measures for their practical and sustainable removal from water bodies. Several bioremediation and...
-
Determination of metals in water samples by atomic absorption spectrometry and flame emission spectrometry
PublicationMetal species in environmental waters are relevant to characterize the metal toxicity, the mobility between different environmental compartments, and for remediation purposes in case of contamination. The concentration of many trace metals in natural water samples are generally at µg/l level. The paper describes determination of metals in water samples based on flame atomic emission and flame atomic absorption spectrometry.
-
Organic Compounds: Halogenated
PublicationThe entry focuses on halogenated organic compounds, mainly short-chain chlorinated aliphatic organic compounds. It describes their occurrence in the different compartments of the environment and their environmental fate, presents the basic toxicological mechanisms, and discusses the different approaches to remediation processes as applied to soil and water pollution. Finally, basic analytical solutions for the determination of...
-
Analytical studies on the environmental state of the Svalbard archipelago - critical source of information about anthropogenic global impact
PublicationThe Svalbard archipelago differs from other polar regions due to its specific environmental conditions and geographic location which make the area gather pollution from long-range transport. Due to the recent development in analytical techniques it is possible to determine the concentration of pollutants at the level present there. This paper collates and discusses the information from the literature about: pollutants present in...
-
Ag modified ZnO microsphere synthesis for efficient sonophotocatalytic degradation of organic pollutants and CO2 conversion
PublicationThe synthesis and design of non-precious and efficient sonophotocatalyts by an environment friendly technique are requisites for solar energy conversion and environmental remediation. This work reports the preparation of Ag/ZnO microspheres with different Ag contents through deposition–precipitation method for pollutant degradation and CO2 conversion. Detail structural investigation reveals that ZnO microspheres and Ag-ZnO microspheres...
-
Biocatalytic Functionalities of Lignin Peroxidase-Based Systems in Lignin Depolymerization and Pollutants Removal from Environmental Matrices
PublicationPurpose of Review In the presented review, we have summarized and highlighted recent developments in the use of lignin peroxidase (LiP) to remove a variety of pollutants from water matrices. The high redox potential of LiP is underlined by its excellent catalytic functionalities in the elimination of pharmaceuticals, phenolics, dyes, polycyclic aromatic hydrocarbons (PAHs), endocrine-disrupting chemicals (EDCs), and other miscellaneous...
-
Thermally activated persulfate-based Advanced Oxidation Processes — recent progress and challenges in mineralization of persistent organic chemicals: a review
PublicationThermally activated persulfate (TAP) finds application in Advanced Oxidation Processes for the removal of pollutants from contaminated water and soil. This paper reviewed the various cases of TAP in the environmental remediation. The pollutants such as individual pharmaceuticals, biocides, cyclic organic compounds, and dyes are considered in this review. It is interesting to note that most of the organic compounds undergo complete...
-
Novel approach to ecotoxicological risk assessment of sediments cores around the shipwreck by the use of self-organizing maps
PublicationMarine and coastal pollution plays an increasingly important role due to recent severe accidents which drew attention to the consequences of oil spills causing widespread devastation of marine ecosystems. All these problems cannot be solved without conducting environmental studies in the area of possible oil spill and performing chemometric evaluation of the data obtained looking for similar patterns among pollutants and optimize...
-
Application of persulfate-based oxidation processes to address diverse sustainability challenges: A critical review
PublicationOver the past years, persulfate (PS) is widely applied due to their high versatility and efficacy in decontamination and sterilization. While treatment of organic chemicals, remediation of soil and groundwater, sludge treatment, disinfection on pathogen microorganisms have been covered by most published reviews, there are no comprehensive and specific reviews on its application to address diverse sustainability challenges, including...
-
An Overview of Treatment Approaches for Octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) Explosive in Soil, Groundwater, and Wastewater
PublicationOctahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) is extensively exploited in the manufacturing of explosives; therefore, a significant level of HMX contamination can be encountered near explosive production plants. For instance, up to 12 ppm HMX concentrations have been observed in the wastewater effluent of a munitions manufacturing facility, while up to 45,000 mg/kg of HMX has been found in a soil sample taken from...
-
Graphitic carbon nitride nanosheets decorated with HAp@Bi2S3 core–shell nanorods: Dual S-scheme 1D/2D heterojunction for environmental and hydrogen production solutions
PublicationBy combining different semiconductors, scientists have developed innovative materials capable of converting solar energy into useful forms of energy or driving chemical reactions that clean up pollutants. These materials offer a promising path to combat global environmental and energy challenges. In this study, HAp@Bi2S3 core–shell structures were synthesized using a facile microemulsion technique, and then loaded onto graphitic...
-
Spectroscopic and magnetic studies of highly dispersible superparamagnetic silica coated magnetite nanoparticles
PublicationSuperparamagnetic behavior in aqueously well dispersible magnetite core-shell Fe3O4@SiO2 nanoparticles is presented. The magnetic properties of core-shell nanoparticles were measured with use of the DC, AC magnetometry and EPR spectroscopy. Particles were characterized by HR-TEM and Raman spectroscopy, showing a crystalline magnetic core of 11.5 ± 0.12 nm and an amorphous silica shell of 22 ± 1.5 nm in thickness. The DC, AC magnetic...
-
Chitosan-based nanomaterials for removal of water pollutants
PublicationThe rise of micropollutants presents a significant threat to both the environment and human well-being, requiring effective strategies for their mitigation. Chitin serves as the precursor for chitosan, composed of two monomers featuring acetamido and amino groups. Chitosan possesses several noteworthy attributes, including its ability to bind water and fat, humidity content, solubility, consistent molecular weight, and various...
-
Recent applications and future prospects of magnetic biocatalysts
PublicationMagnetic biocatalysts combine magnetic properties with the catalytic activity of enzymes, achieving easy recovery and reuse in biotechnological processes. Lipases immobilized by magnetic nanoparticles dominate. This review covers an advanced bibliometric analysis and an overview of the area, elucidating research advances. Using WoS, 34,949 publications were analyzed and refined to 450. The prominent journals, countries, institutions, and...
-
Mechanochemically synthesized Mn3O4@β-cyclodextrin mediates efficient electron transfer process for peroxymonosulfate activation
PublicationThe rational surface engineering of heterogeneous catalysts is of great significance in advanced oxidation processes (AOPs) for eliminating refractory contaminants but remains challenging. In this study, β-cyclodextrin modified Mn3O4 (Mn3O4@β-CD) was prepared through a mechanochemical approach for peroxymonosulfate (PMS) activation, which achieved efficient bisphenol A (BPA) removal via electron transfer process (ETP). The reactive...
-
Recent advances on the removal of phosphorus in aquatic plant-based systems
PublicationPhosphorus (P) is a vital nutrient for the ecosystems and its excess in wastewater streams leads to some environmental issues such as extensive algae growth (eutrophication). Phytoremediation is a green technology that is based on the combined actions of plants and their associated microbial groups to remove and transfer the toxic compounds in surface water, groundwater and soil. Aquatic plants are widely used for the remediation...
-
A review on hydrophobic electrospun nanofibers-based materials and membranes for water treatment: Challenges, outlook, and stability
PublicationMembrane technology is well recognized as a dependable means of supplementing the availability of potable water through processes such as water purification and desalination. Electrospun nanofiber membranes have garnered significant attention because of their advantageous features, including a greater specific surface area, increased porosity, reduced thickness, and popularity. Consequently, ENMs have emerged as an up-and-coming...
-
Physicochemical aspects of the application of surfactants and biosurfactants in soil remediation
PublicationZaprezentowano właściwości zwilżające, emulgujące oraz solubilizujące surfaktantów niejonowych Rokanolu L10, Tritonu X-100 oraz biosurfaktantu JBR 425. Jako modelowe zanieczyszczenia wybrano tetrachloroetylen (PCE) oraz o-dichlorobenzen (o-DCB). Stabilność emulsji rosła wraz ze stężeniem surfaktantu. Rozpuszczalnośc PCE i o-DCB była największa w roztworach micelarnych biosurfaktantu JBR.
-
Functionalized nanodiamonds as a perspective green carbo-catalyst for removal of emerging organic pollutants
PublicationRapid industrial and urban development jointly with rising global population strongly affect the large-scale issues with drinking, groundwater, and surface water pollution. Concerns are not limited to environmental issues but also human health impact becoming serious global aspect. Organic pollution becomes a primarily serious hazard, therefore, the novel sophisticated approaches to treat them are thoroughly investigated. Among...
-
Remediation techniques for elimination of heavy metal pollutants from soil: A review
Publication -
abiotic degradation of chlorinated ethanes and ethenes in water
PublicationIntroduction Chlorinated ethanes and ethenes are among themost frequently detected organic pollutants of water. Theirphysicochemical properties are such that they can contaminateaquifers for decades. In favourable conditions, they canundergo degradation. In anaerobic conditions, chlorinatedsolvents can undergo reductive dechlorination.Degradation pathways Abiotic dechlorination is usuallyslower than microbial but abiotic dechlorination...
-
Remediation of soils on municipal rendering plant territories using Miscanthus × giganteus
PublicationPhytoremediation, as a cost-effective, highly efficient, environmentally friendly, and green approach, gained attention to the removal of metals, including heavy metals, from contaminated soils. The toxic nature of heavy metals can have an adverse effect on human health and the ecosystem, and their removal remains a worldwide problem. Therefore, in this study, a field experiment was carried out to evaluate the potential of Miscanthus × giganteus...
-
Degradation of cefadroxil drug by newly designed solar light responsive alcoholic template-based lanthanum ferrite nanoparticles
PublicationIn this work, lanthanum ferrite nanoparticles were synthesized via a simple co-precipitation method. Two different templates, namely sorbitol and mannitol, were used in this synthesis to tune the optical, structural, morphological, and photocatalytic properties of lanthanum ferrite. The synthesized lanthanum ferrite-sorbitol (LFOCo-So) and lanthanum ferrite-mannitol (LFOCo-Mo) were investigated through Ultraviolet–Visible (UV–Vis),...
-
Removal of VOCs from air and assessment of dominant species in a peat-perlite biotrickling filter
PublicationAir pollution has become a major concern because it is inevitably connected with the rapid development of both industrial and residential areas. Volatile organic compounds (VOCs) are emitted from various anthropogenic sources e.g. transportation, factories or landfills as well as recycling factories. It is problematic not only because of the direct impact on humans and environment but also from economy viewpoint as it increases...
-
Tailoring Defects in B, N-Codoped Carbon Nanowalls for Direct Electrochemical Oxidation of Glyphosate and its Metabolites
PublicationTailoring the defects in graphene and its related carbon allotropes has great potential to exploit their enhanced electrochemical properties for energy applications, environmental remediation, and sensing. Vertical graphene, also known as carbon nanowalls (CNWs), exhibits a large surface area, enhanced charge transfer capability, and high defect density, making it suitable for a wide range of emerging applications. However, precise...
-
Titanium lanthanum three oxides decorated magnetic graphene oxide for adsorption of lead ions from aqueous media
PublicationThe current study presents a viable and straightforward method for synthesizing titanium lanthanum three oxide nanoparticles (TiLa) and their decoration onto the ferrous graphene oxide sheets to produce FeGO-TiLa as efficient magnetic adsorbent. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and vibration sample magnetometer (VSM) were used to evaluate...
-
Catalysts for advanced oxidation processes: Deep eutectic solvents-assisted synthesis – A review
PublicationNew catalyst synthesis techniques, including green materials, are extensively studied for heterogeneous photocatalytic advanced oxidation processes (AOPs) on spotlight of sustainable development. Deep eutectic solvents (DESs) started to be used in this field as environmentally friendly alternative to ionic liquids (ILs). During the catalyst synthesis, DESs can act as stabilizers, capping agents, structure directing agents, templates,...
-
Effective assessment of biopolymer-based multifunctional sorbents for the remediation of environmentally hazardous contaminants from aqueous solutions
PublicationPersistent contaminants in wastewater effluent pose a significant threat to aquatic life and are one of the most significant environmental concerns of our time. Although there are a variety of traditional methods available in wastewater treatment, including adsorption, coagulation, flocculation, ion exchange, membrane filtration, co-precipitation and solvent extraction, none of these have been found to be significantly cost-effective...
-
Cadmium accumulation by Phragmites australis and Iris pseudacorus from stormwater in floating treatment wetlands microcosms: Insights into plant tolerance and utility for phytoremediation
PublicationEnvironmentally sustainable remediation is needed to protect freshwater resources which are deteriorating due to severe industrial, mining, and agricultural activities. Treatment by floating wetlands could be a sustainable solution to remediate water bodies. The study aimed to examine the effects of Cd on Phragmites australis and Iris pseudacorus growth (height, biomass, root length and chlorophyll contents), anatomy, Cd accumulation...
-
Band engineering of BiOBr based materials for photocatalytic wastewater treatment via advanced oxidation processes (AOPs) – A review
PublicationSemiconductor based photocatalysts have been an efficient technology for water and wastewater remediation, addressing the concepts of green chemistry and sustainable development. Owing to narrow and suitable band structure, BiOBr is a promising candidate for efficient wastewater treatment via photocatalysis. Enhancement of photocatalytic properties can be obtained by various techniques like doping, element rich strategy, facet...
-
Oil removal from polluted soil by washing with surfactants solutions in dynamic conditions
PublicationFor washing of the oil from polluted soil surfactants solutions were applied. In a research a nonionic synthetic surfactant - polyoxyethylene ether of synthetic fatty alcohol (Rokanol NL6), rhamnolipid biosurfactant JBR 425 (Jeneil Biosurfactant Co. LLC) and their mixtures were used. Results of oil removal from peat soil and sand with mixtures of surfactants solutions at concentration 0,5 g/dm...
-
Hazardous material-related propagation of the effects of train accidents in the subgrade
PublicationA large part of the transport of hazardous materials is carried out by rail. Therefore, the security of these transports is becoming increasingly important. Every catastrophe involving dangerous materials has a negative impact on the participants of the incident and the surrounding environment, because its range is generally not local. It follows that in the event of a catastrophe, its effects should be minimized and remediation...
-
The use of Kamienna głowa cabbage species for phytoextraction of zinc and cadmium from the soil
PublicationAlthough traditional technologies for cleaning contaminated soils have proven to be efficient, they are usually expensive, labor intensive, and in the case of soil, they produce severe disturbance. Most recently, the use of plants in metal extraction (phytoremediation) has appeared as a promising alternative in the removal of heavy metal excess from soil. Phytoremediation uses of plant for pollutant stabilization, extraction, degradation,...
-
Novel Structures and Applications of Graphene-Based Semiconductor Photocatalysts: Faceted Particles, Photonic Crystals, Antimicrobial and Magnetic Properties
PublicationGraphene, graphene oxide, reduced graphene oxide and their composites with various compounds/materials have high potential for substantial impact as cheap photocatalysts, which is essential to meet the demands of global activity, offering the advantage of utilizing “green” solar energy. Accordingly, graphene-based materials might help to reduce reliance on fossil fuel supplies and facile remediation routes to achieve clean environment...
-
The Sonocatalytic Activation of Persulfates on Iron Nanoparticle Decorated Zeolite for the Degradation of 1,4-Dioxane in Aquatic Environments
PublicationIn the chemical industry, 1,4-diethylene dioxide, commonly called dioxane, is widely used as a solvent as well as a stabilizing agent for chlorinated solvents. Due to its high miscibility, dioxane is a ubiquitous water contaminant. This study investigates the effectiveness of catalyst- and ultrasound (US)-assisted persulfate (PS) activation with regard to degrading dioxane. As a first step, a composite catalyst was prepared using...
-
Estimation of Conservative Contaminant Travel Time through Vadose Zone Based on Transient and Steady Flow Approaches
PublicationEstimation of contaminant travel time through the vadose zone is needed for assessing groundwater vulnerability to pollution, planning monitoring and remediation activities or predicting the effect of land use change or climate change on groundwater quality. The travel time can be obtained from numerical simulations of transient flow and transport in the unsaturated soil profile, which typically require a large amount of data and...
-
Nanoparticles preparation using microemulsion systems
PublicationMetallic nanoparticles become of current interests because they exhibit unique properties compared with those of metal atoms or bulk metal due to the quantum size effect and their large surface area, which make them attractive for applications in optics, electronics, catalysis biology and medicine. TiO2 has been used for environmental remediation purposes such as in the purification of water and air and also solar-to chemical energy...
-
S-scheme heterojunction Bi2O3-ZnO/Bentonite clay composite with enhanced photocatalytic performance
PublicationThe industrial waste water is always a bottleneck problem in the modern civilization of the present era. In a quest to develop effective methods for the elimination of lethal pollutants from the waste water and water remediation, this work is focused on the development of a rapid and proficient approach for preparing supported binary metal oxide catalyst for photocatalytic advance oxidation process used in waste water treatment...
-
Insight into Potassium Vanadates as Visible-Light-Driven Photocatalysts: Synthesis of V(IV)-Rich Nano/Microstructures for the Photodegradation of Methylene Blue
PublicationPhotocatalysis is regarded as a promising tool for wastewater remediation. In recent years, many studies have focused on investigating novel photocatalysts driven by visible light. In this study, K2V6O16·nH2O nanobelts and KV3O8 microplatelets were synthesized and investigated as photocatalysts. Samples were obtained via the facile method based on liquid-phase exfoliation with ion exchange. By changing the synthesis temperature...
-
Hydrochars as a bio-based adsorbent for heavy metals removal: A review of production processes, adsorption mechanisms, kinetic models, regeneration and reusability of hydrochar
PublicationThe spread of heavy metals throughout the ecosystem has extremely endangered human health, animals, plants, and natural resources. Hydrochar has emerged as a promising adsorbent for removing heavy metals from water and wastewater. Hydrochar, obtained from hydrothermal carbonization of biomass, owns unique physical and chemical properties that are highly potent in capturing heavy metals via surface complexation, electrostatic interactions,...
-
Trace Metal Contamination of Bottom Sediments: A Review of Assessment Measures and Geochemical Background Determination Methods
PublicationThis paper provides an overview of different methods of assessing the trace metal (TM) contamination status of sediments affected by anthropogenic interference. The geochemical background determination methods are also described. A total of 25 papers covering rivers, lakes, and retention tanks sediments in areas subjected to anthropogenic pressure from the last three years (2019, 2020, and 2021) were analysed to support our examination...
-
Phytoextraction and recovery of rare earth elements using willow (Salix spp.)
PublicationSoil and water contaminations are caused by rare earth elements (REEs) due to mining and industrial activities, that threaten the ecosystem and human health. Therefore, phytoremediation methods need to be developed to overcome this problem. To date, little research has been conducted concerning the phytoremediation potential of Salix for REEs. In this study, two Salix species (Salix myrsinifolia and Salix schwerinii) and two Salix...
-
High-performance activation of ozone by sonocavitation for BTEX degradation in water
PublicationThis work presents a novel advanced oxidation process (AOP) for degradation of emerging organic pollutants – benzene, toluene, ethylbenzene and xylenes (BTEXs) in water. A comparative study was performed for sonocavitation assisted ozonation under 40–120 kHz and 80–200 kHz dual frequency ultrasounds (DFUS). Based on the obtained results, the combination of 40–120 kHz i.e., low-frequency US (LFDUS) with O3 exhibited excellent oxidation...
-
Effective sonophotocatalytic degradation of tetracycline in water: Optimization, kinetic modeling, and degradation pathways
PublicationHybrid advanced oxidation processes (AOPs) are gaining interest in degradation of variety of recalcitrant compounds for water and wastewater treatment, due to possible synergistic effects. The present study systematically evaluated the degradation of tetracycline (TC) with a sonophotocatalytic process combining acoustic cavitation (sonocavitation) and photocatalysis based on N-doped TiO2 catalyst. The TC degradation rate constant...