Search results for: artificial intelligence, machine learning, cnn, neural networks, optimization algorithms - Bridge of Knowledge

Search

Search results for: artificial intelligence, machine learning, cnn, neural networks, optimization algorithms

Search results for: artificial intelligence, machine learning, cnn, neural networks, optimization algorithms

  • Olgun Aydin dr

    Olgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Principal Machine Learning Engineer in Nike, and works as Assistant Professor in Gdansk University of Technology in Poland. Dr. Aydin is part of editorial board of "Journal of Artificial Intelligence and Data Science" Dr. Aydin served as Vice-Chairman of Why R? Foundation and is member of Polish Artificial Intelligence Society. Olgun is...

  • Ireneusz Czarnowski Prof.

    People

    IRENEUSZ CZARNOWSKI is a graduate of the Faculty of Electrical Engineering at Gdynia Maritime University. He gained a doctoral degree in the field of computer science at Poznan University of Technology and a postdoctoral degree in the field of computer science at Wroclaw University of Science and Technology. Since 1998 is associated with Gdynia Maritime University, currently is a professor of computer science in the Department...

  • Applying artificial intelligence for cellular networks optimization

    Publication
    • O. Semenova
    • A. Semenov
    • O. Bisikalo
    • V. Kucheruk
    • P. Kulakov
    • R. Romaniuk
    • P. Komada
    • K. Nurseitova
    • R. S. Romaniuk

    - Year 2019

    Full text to download in external service

  • Neural Networks, Support Vector Machine and Genetic Algorithms for Autonomous Underwater Robot Support

    Publication

    - Year 2014

    In this paper, artificial neural networks, a classification technique called support vector machine and meta-heuristics genetic algorithm have been considered for development in autonomous underwater robots. Artificial neural networks have been used for seabed modelling as well as support vector machine has been applied for the obstacles classification to avoid some collision problems. Moreover, genetic algorithm has been applied...

    Full text to download in external service

  • Optimization of a three-bed adsorption chiller by genetic algorithms and neural networks

    Publication
    • J. Krzywanski
    • K. Grabowska
    • F. Herman
    • P. Pyrka
    • M. Sosnowski
    • T. Prauzner
    • W. Nowak

    - ENERGY CONVERSION AND MANAGEMENT - Year 2017

    Full text to download in external service

  • Perception of Pathologists in Poland of Artificial Intelligence and Machine Learning in Medical Diagnosis—A Cross-Sectional Study

    Publication
    • A. Ahmed
    • A. Brychcy
    • M. Abouzid
    • M. Witt
    • E. Kaczmarek

    - Journal of Personalized Medicine - Year 2023

    Full text to download in external service

  • Cost-Efficient Multi-Objective Design of Miniaturized Microwave Circuits Using Machine Learning and Artificial Neural Network

    Publication

    - Year 2024

    Designing microwave components involves managing multiple objectives such as center frequencies, impedance matching, and size reduction for miniaturized structures. Traditional multi-objective optimization (MO) approaches heavily rely on computationally expensive population-based methods, especially when exe-cuted with full-wave electromagnetic (EM) analysis to guarantee reliability. This paper introduces a novel and cost-effective...

    Full text to download in external service

  • Comparison of selected clustering algorithms of raw data obtained by interferometric methods using artificial neural networks

    Publication

    - Year 2016

    Full text to download in external service

  • Machine Learning- and Artificial Intelligence-Derived Prediction for Home Smart Energy Systems with PV Installation and Battery Energy Storage

    Publication

    - ENERGIES - Year 2023

    Full text to download in external service

  • Deep Learning Basics 2023/24

    e-Learning Courses
    • K. Draszawka

    A course about the basics of deep learning intended for students of Computer Science. It includes an introduction to supervised machine learning, the architecture of basic artificial neural networks and their training algorithms, as well as more advanced architectures (convolutional networks, recurrent networks, transformers) and regularization and optimization techniques.

  • Piotr Szczuko dr hab. inż.

    Piotr Szczuko received his M.Sc. degree in 2002. His thesis was dedicated to examination of correlation phenomena between perception of sound and vision for surround sound and digital image. He finished Ph.D. studies in 2007 and one year later completed a dissertation "Application of Fuzzy Rules in Computer Character Animation" that received award of Prime Minister of Poland. His interests include: processing of audio and video, computer...

  • Patryk Ziółkowski dr inż.

    Assistant Professor at Gdansk Tech. He participated in international projects, including projects for the Ministry of Transportation of the State of Alabama (2015), he is also the winner of a grant from the Kosciuszko Foundation for conducting research in the USA, which he completed in 2018. An expert in the field of artificial intelligence. His main area of research interest is the application of artificial intelligence in Civil...

  • Deep neural networks for data analysis 24/25

    e-Learning Courses
    • J. Cychnerski
    • K. Draszawka

    This course covers introduction to supervised machine learning, construction of basic artificial deep neural networks (DNNs) and basic training algorithms, as well as the overview of popular DNNs architectures (convolutional networks, recurrent networks, transformers). The course introduces students to popular regularization techniques for deep models. Besides theory, large part of the course is the project in which students apply...

  • Bibliometric analysis of artificial intelligence in wastewater treatment: Current status, research progress, and future prospects

    Publication

    - Journal of Environmental Chemical Engineering - Year 2024

    Wastewater treatment is an important topic for improving water quality and environmental protection, and artificial intelligence has become a powerful tool for wastewater treatment. This work provides research progress and a literature review of artificial intelligence applied to wastewater treatment based on the visualization of bibliometric tools. A total of 3460 publications from 2000 to 2023 were obtained from the Web of Science...

    Full text to download in external service

  • Artificial Neural Networks as an architectural design tool- generating new detail forms based on the Roman Corinthian order capital

    The following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital....

    Full text available to download

  • THE ROLE OF INFERENCE IN MOBILE MEDICAL APPLICATION DESIGN

    Publication

    - Year 2021

    In the early 21st century, artificial intelligence began to be used to process medical information. However, before this happened, predictive models used in healthcare could only consider a limited number of variables, and only in properly structured and organised medical data. Today, advanced tools based on machine learning techniques - which, using artificial neural networks, can explore extremely complex relationships - and...

  • Data governance: Organizing data for trustworthy Artificial Intelligence

    Publication
    • M. Janssen
    • P. Brous
    • E. Estevez
    • L. S. Barbosa
    • T. Janowski

    - GOVERNMENT INFORMATION QUARTERLY - Year 2020

    The rise of Big, Open and Linked Data (BOLD) enables Big Data Algorithmic Systems (BDAS) which are often based on machine learning, neural networks and other forms of Artificial Intelligence (AI). As such systems are increasingly requested to make decisions that are consequential to individuals, communities and society at large, their failures cannot be tolerated, and they are subject to stringent regulatory and ethical requirements....

    Full text available to download

  • Machine Learning and Text Analysis in an Artificial Intelligent System for the Training of Air Traffic Controllers

    Publication
    • T. Shmelova
    • Y. Sikirda
    • N. Rizun
    • V. Lazorenko
    • V. Kharchenko

    - Year 2020

    This chapter presents the application of new information technology in education for the training of air traffic controllers (ATCs). Machine learning, multi-criteria decision analysis, and text analysis as the methods of artificial intelligence for ATCs training have been described. The authors have made an analysis of the International Civil Aviation Organization documents for modern principles of ATCs education. The prototype...

    Full text available to download

  • Andrzej Stateczny prof. dr hab. inż.

    People

    Prof. Dr. Andrzej Stateczny is a Professor of Gdansk Technical University Poland and President of Marine Technology Ltd. His research interests are mainly centered on navigation, hydrography and geoinformatics. Current RF research activities include radar navigation, comparative navigation, hydrography, artificial intelligence methods focused on image processing and multisensory data fusion. He has been the Principal Investigator...

  • Deep Learning: A Case Study for Image Recognition Using Transfer Learning

    Publication

    - Year 2021

    Deep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...

    Full text to download in external service

  • Deep Learning

    Publication

    - Year 2021

    Deep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...

    Full text to download in external service

  • Pedestrian detection in low-resolution thermal images

    Over one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...

    Full text to download in external service

  • University Students’ Research on Artificial Intelligence and Knowledge Management. A Review and Report of Multi-case Studies

    Publication

    - Year 2021

    Leading technologies are very attractive for students preparing their theses as the completion of their studies. Such an orientation of students connected with professional experiences seems to be a crucial motivator in the research in the management and business areas where these technologies condition the development of professional activities. The goal of the paper is the analysis of students’ thesis topics defended in the last...

    Full text available to download

  • Waldemar Korłub dr inż.

    People

    Waldemar Korłub obtained an Eng. degree in 2011, MSc.Eng. degree in 2012 and PhD in Computer Science in 2017 granted by the Faculty of Electronics, Telecommunications and Informatics at Gdansk University of Technology. His research interests include: distributed systems mainly grid and cloud computing platforms, autonomous systems capable of self-optimization, self-management, self-healing and self-protection, artificial intelligence...

  • Neural network training with limited precision and asymmetric exponent

    Publication

    Along with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...

    Full text available to download

  • Sensing Direction of Human Motion Using Single-Input-Single-Output (SISO) Channel Model and Neural Networks

    Publication

    - IEEE Access - Year 2022

    Object detection Through-the-Walls enables localization and identification of hidden objects behind the walls. While numerous studies have exploited Channel State Information of Multiple Input Multiple Output (MIMO) WiFi and radar devices in association with Artificial Intelligence based algorithms (AI) to detect and localize objects behind walls, this study proposes a novel non-invasive Through-the-Walls human motion direction...

    Full text available to download

  • Metody sztucznej inteligencji do wspomagania bankowych systemów informatycznych

    W pracy opisano zastosowania nowoczesnych metod sztucznej inteligencji do wspomagania bankowych systemów informatycznych. Wykorzystanie w systemach informatycznych algorytmów ewolucyjnych, harmonicznych, czy sztucznych sieci neuronowych w połączeniu z nowoczesną technologią mikroprocesorową umożliwiają zasadniczy wzrost konkurencyjności banku. Dlatego w pracy omówiono wybrane zastosowania bankowe ze szczególnym uwzględnieniem zbliżeniowych...

  • Przegląd metod szybkiego prototypowania algorytmów uczenia maszynowego w FPGA

    W artykule opisano możliwe do wykorzystania otwarte narzędzia wspomagające szybkie prototypowanie algorytmów uczenia maszynowego (ML) i sztucznej inteligencji (AI) przy użyciu współczesnych platform FPGA. Przedstawiono przykład szybkiej ścieżki przy realizacji toru wideo wraz z implementacją przykładowego algorytmu prze-twarzania w trybie na żywo.

    Full text available to download

  • Buried Object Characterization Using Ground Penetrating Radar Assisted by Data-Driven Surrogate-Models

    Publication
    • R. Yurt
    • H. Torpi
    • P. Mahouti
    • A. Kizilay
    • S. Kozieł

    - IEEE Access - Year 2023

    This work addresses artificial-intelligence-based buried object characterization using 3-D full-wave electromagnetic simulations of a ground penetrating radar (GPR). The task is to characterize cylindrical shape, perfectly electric conductor (PEC) object buried in various dispersive soil media, and in different positions. The main contributions of this work are (i) development of a fast and accurate data driven surrogate modeling...

    Full text available to download

  • PPAM 2022

    Events

    11-09-2022 07:00 - 14-09-2022 13:56

    The PPAM 2022 conference, will cover topics in parallel and distributed computing, including theory and applications, as well as applied mathematics.

  • Identyfikacja instrumentu muzycznego z nagrania fonicznego za pomocą sztucznych sieci neuronowych

    Publication

    - Year 2024

    Celem rozprawy jest zbadanie algorytmów do identyfikacji instrumentów występujących w sygnale polifonicznym z wykorzystaniem sztucznych sieci neuronowych. W części teoretycznej przywołano podstawy przetwarzania sygnałów fonicznych w kontekście ekstrakcji parametrów sygnałów wykorzystywanych w treningu sieci neuronowych. Dodatkowo dokonano analizy rozwoju metod uczenia maszynowego z uwzględnieniem podziału na sieci neuronowe pierwszej,...

    Full text available to download

  • Optymalizacja treningu i wnioskowania sieci neuronowych

    Sieci neuronowe są jedną z najpopularniejszych i najszybciej rozwijających się dziedzin sztucznej inteligencji. Ich praktyczne wykorzystanie umożliwiło szersze użycie komputerów w wielu obszarach komunikacji, przemysłu i transportu. Dowody tego są widoczne w elektronice użytkowej, medycynie, a nawet w zastosowaniach militarnych. Wykorzystanie sztucznej inteligencji w wielu przypadkach wymaga jednak znacznej mocy obliczeniowej,...

    Full text to download in external service

  • How Can We Identify Electrophysiological iEEG Activities Associated with Cognitive Functions?

    Publication

    - Year 2023

    Electrophysiological activities of the brain are engaged in its various functions and give rise to a wide spectrum of low and high frequency oscillations in the intracranial EEG (iEEG) signals, commonly known as the brain waves. The iEEG spectral activities are distributed across networks of cortical and subcortical areas arranged into hierarchical processing streams. It remains a major challenge to identify these activities in...

    Full text to download in external service

  • From Data to Decision: Interpretable Machine Learning for Predicting Flood Susceptibility in Gdańsk, Poland

    Publication

    - Remote Sensing - Year 2024

    Flood susceptibility prediction is complex due to the multifaceted interactions among hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support Vector Machine (SVM), Random Forest (RF), and...

    Full text to download in external service

  • Inteligentne systemy agentowe w systemach zdalnego nauczania

    W pracy omówiono inteligentne systemy agentowe w systemach zdalnego nauczania. Po krótkim przedstawieniu ewolucji systemów zdalnego nauczania i ich wybranych zastosowań, scharakteryzowano inteligentne agenty edukacyjne. Omówiono wykorzystanie programowania genetycznego oraz algorytmów neuro-ewolucyjnych do implementacji oprogramowania tej klasy. Ponadto, nawiązano do modelu Map-Reduce, który efektywnie wspiera architekturę nowoczesnego...

    Full text available to download

  • Wykorzystanie sztucznych sieci neuronowych do szacowania wpływu drgań na budynki jednorodzinne

    W artykule przedstawiono metodę prognozowania wpływu drgań na budynki mieszkalne z wykorzystaniem sztucznych sieci neuronowych. Drgania komunikacyjne mogą doprowadzić do uszkodzenia elementów konstrukcyjnych, a nawet do awarii budynku. Najczęstszym efektem są jednak rysy, pękanie tynku i wypraw. Metody oparte na sztucznej inteligencji są przybliżone, ale stanowią wystarczająco dokładną i ekonomiczną alternatywę dla tradycyjnych...

    Full text available to download

  • Olgun Aydin Dr

    People

    Olgun Aydin finished his PhD by publishing a thesis about Deep Neural Networks. He works as a Senior Data Scientist in PwC Poland, gives lectures in Gdansk University of Technology in Poland and member of WhyR? Foundation. Olgun is a very big fan of R and author of the book called “R Web Scraping Quick Start Guide” , two video courses are called “Deep Dive into Statistical Modelling using R” and “Applied Machine Learning and Deep...

  • The impact of the AC922 Architecture on Performance of Deep Neural Network Training

    Publication

    - Year 2020

    Practical deep learning applications require more and more computing power. New computing architectures emerge, specifically designed for the artificial intelligence applications, including the IBM Power System AC922. In this paper we confront an AC922 (8335-GTG) server equipped with 4 NVIDIA Volta V100 GPUs with selected deep neural network training applications, including four convolutional and one recurrent model. We report...

    Full text to download in external service

  • Spotkanie politechnicznego klubu sztucznej inteligencji

    Events

    24-10-2019 17:30 - 24-10-2019 19:15

    Pierwsze w tym roku akademickim spotkanie klubu AI Bay – Zatoka Sztucznej Inteligencji, który działa na Politechnice Gdańskiej odbędzie się w Gmachu B Wydziału Elektroniki, Telekomunikacji i Informatyki (Audytorium 1P).

  • Józef Woźniak prof. dr hab. inż.

    People

    Professor Józef Woźniak received his M.Sc., Ph.D. and D.Sc. degrees in electronics and telecommunications from the Faculty of Electronics, Gdańsk University of Technology (GUT), Poland, in 1971, 1976 and 1991, respectively. In January 2002 he became a full professor. In 1993 he was elected Associate Dean of the Faculty of Electronics and in 1994 he was he was appointed a Professor at GUT. Simultaneously, from October 1994 till...

  • Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych

    W artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wykorzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...

    Full text available to download

  • SegSperm - a dataset of sperm images for blurry and small object segmentation

    Open Research Data

    Many deep learning applications require figure-ground segmentation. The performance of segmentation models varies across modalities and acquisition settings.

  • Abdalraheem Ijjeh Ph.D. Eng.

    People

    The primary research areas of interest are artificial intelligence (AI), machine learning, deep learning, and computer vision, as well as modeling physical phenomena (i.e., guided waves in composite laminates). The research interests described above are utilized for SHM and NDE applications, namely damage detection and localization in composite materials.  

  • Diagnostyka łożysk silnika indukcyjnego na podstawie prądu zasilającego przy użyciu sztucznych sieci neuronowych

    Publication

    W artykule zawarto wyniki badań dotyczące diagnostyki łożysk silnika indukcyjnego na podstawie pomiarów prądu zasilającego z wyko-rzystaniem sztucznych sieci neuronowych. Zaprezentowano wyniki uczenia sieci oraz rezultaty testów przeprowadzonych na danych spoza zbioru uczącego. Badania wykonane zostały na obiektach z celowo wprowadzonymi uszkodzeniami łożysk. Przedstawiona nowa koncepcja zakłada użycie zestawu sieci neuronowych...

  • Halucynacje chatbotów a prawda: główne nurty debaty i ich interpretacje

    Publication
    • J. Kreft
    • M. Boguszewicz-kreft
    • B. Cyrek

    - Roczniki Nauk Społecznych - Year 2024

    Generatywne systemy sztucznej inteligencji (SI) są w stanie tworzyć treści medialne poprzez zastosowanie uczenia maszynowego do dużych ilości danych szkoleniowych. Te nowe dane mogą obejmować tekst (np. Bard firmy Google, LLaMa firmy Meta lub ChatGPT firmy OpenAI) oraz elementy wizualne (np. Stable Diffusion lub DALL-E OpenAI) i dźwięk (np. VALL-E firmy Micro- soft). Stopień zaawansowania tych treści może czynić je nieodróżnialnymi...

    Full text available to download

  • Sathwik Prathapagiri

    People

    Sathwik was born in 2000. In 2022, he completed his Master’s of Science in  Biological Sciences and Bachelor’s of Engineering in Chemical Engineering in an integrated dual degree program from Birla Institute Of Technology And Science, Pilani, India. During his final year, he worked as a research intern under Dr Giri P Krishnan at Bazhenov lab, University of California San Diego school of medicine to pursue his Master’s Thesis on...

  • Poprawa jakości klasyfikacji głębokich sieci neuronowych poprzez optymalizację ich struktury i dwuetapowy proces uczenia

    Publication

    - Year 2024

    W pracy doktorskiej podjęto problem realizacji algorytmów głębokiego uczenia w warunkach deficytu danych uczących. Głównym celem było opracowanie podejścia optymalizującego strukturę sieci neuronowej oraz zastosowanie uczeniu dwuetapowym, w celu uzyskania mniejszych struktur, zachowując przy tym dokładności. Proponowane rozwiązania poddano testom na zadaniu klasyfikacji znamion skórnych na znamiona złośliwe i łagodne. W pierwszym...

    Full text available to download

  • Neural networks and deep learning

    Publication

    - Year 2022

    In this chapter we will provide the general and fundamental background related to Neural Networks and Deep Learning techniques. Specifically, we divide the fundamentals of deep learning in three parts, the first one introduces Deep Feed Forward Networks and the main training algorithms in the context of optimization. The second part covers Convolutional Neural Networks (CNN) and discusses their main advantages and shortcomings...

    Full text to download in external service

  • Adaptacyjny system oświetlania dróg oraz inteligentnych miast

    Publication

    - Year 2024

    Przedmiotem rozprawy jest zbadanie praktycznej możliwości wykrywania w czasie rzeczywistym anomalii w systemie oświetlenia drogowego w oparciu o analizę danych ze inteligentnych liczników energii. Zastosowanie inteligentnych liczników energii elektrycznej (Smart Meter) w systemach oświetlenia drogowego stwarza nowe możliwości w zakresie automatycznej diagnostyki takich niepożądanych zjawisk jak awarie lamp, odstępstwa od harmonogramu...

    Full text available to download

  • How personality traits, sports anxiety, and general imagery could influence the physiological response measured by SCL to imagined situations in sports?

    Open Research Data
    open access

    The data were collected to understand how individual differences in personality (e.g. neuroticism), general imagery, and situational sports anxiety are linked to arousal measuring with skin conductance level (SCL) in situational imagery (as scripted for sport-related scenes). Thirty persons participated in the study, aged between 14 and 42 years, with...