Filters
total: 4348
-
Catalog
displaying 1000 best results Help
Search results for: ACTIVE LEARNING ALGORITHM
-
Knowledge sharing and knowledge hiding in light of the mistakes acceptance component of learning culture- knowledge culture and human capital implications
PublicationPurpose: This study examines the micromechanisms of how knowledge culture fosters human capital development. Method: An empirical model was developed using the structural equation modeling method (SEM) based on a sample of 321 Polish knowledge workers employed in different industries. Findings: This study provides direct empirical evidence that tacit knowledge sharing supports human capital, whereas tacit knowledge hiding does...
-
MANAGING LEARNING PROCESS WITH E-LEARNING TOOL
PublicationThis article presents one possibility to employ Moodle, the free e-Leaning platform, to organize learning understood as a process. Behavioral approach and application to massive courses are assumed. A case study is presented, where the introduction of Moodle resulted in better student performance in homework
-
Affective computing and affective learning – methods, tools and prospects
PublicationEvery teacher knows that interest, active participation and motivation are important factors in the learning process. At the same time e-learning environments almost always address only the cognitive aspects of education. This paper provides a brief review of methods used for affect recognition, representation and processing as well as investigates how these methods may be used to address affective aspect of e-education. The paper...
-
Blended Learning Model for Computer Techniques for Students of Architecture
PublicationAbstract: The article summarizes two-year experience of implementing hybrid formula for teaching Computer Techniques at the Faculty of Architecture at the Gdansk University of Technology. Original educational e-materials, consisting of video clips, text and graphics instructions, as well as links to online resources are embedded in the university e-learning educational platform. The author discusses technical constraints associated...
-
VIBRATION SURVEILLANCE DURING MILLING OF FLEXIBLE DETAILS WITH A USE OF THE ACTIVE OPTIMAL CONTROL
PublicationThe main goal of modern machining operations is to achieve increasingly better performance. High Speed Machining and/or High Performance Cutting, despite a lot of advantages, have also some drawbacks, for example, a possibility of losing stability and development of self-excited chatter vibration. This paper presents an approach of vibration surveillance during high speed milling with a use of active optimal control. Non-stationary...
-
Deep Learning: A Case Study for Image Recognition Using Transfer Learning
PublicationDeep learning (DL) is a rising star of machine learning (ML) and artificial intelligence (AI) domains. Until 2006, many researchers had attempted to build deep neural networks (DNN), but most of them failed. In 2006, it was proven that deep neural networks are one of the most crucial inventions for the 21st century. Nowadays, DNN are being used as a key technology for many different domains: self-driven vehicles, smart cities,...
-
Speech Analytics Based on Machine Learning
PublicationIn this chapter, the process of speech data preparation for machine learning is discussed in detail. Examples of speech analytics methods applied to phonemes and allophones are shown. Further, an approach to automatic phoneme recognition involving optimized parametrization and a classifier belonging to machine learning algorithms is discussed. Feature vectors are built on the basis of descriptors coming from the music information...
-
Collaborative Data Acquisition and Learning Support
PublicationWith the constant development of neural networks, traditional algorithms relying on data structures lose their significance as more and more solutions are using AI rather than traditional algorithms. This in turn requires a lot of correctly annotated and informative data samples. In this paper, we propose a crowdsourcing based approach for data acquisition and tagging with support for Active Learning where the system acts as an...
-
Performance comparison of new modified gradient algorithm and Foy algorithm for iterative position calculation
PublicationIn the paper a new position calculation algorithm is presented. It is proposed for indoor environments and is called modified gradient algorithm. This algorithm is compared with well-known Foy algorithm. The comparative analysis is based on real distance measurements conducted in indoor environment.
-
A filter bank solution for active power filter control algorithms
PublicationThb paper describes the proposed active power fiIter (APF) with a new control circuit based on an algorithm using ufilter bank and a harmonic predictor. The conirol circuit was realized using the digiiaI signor processor ADSP-21065L and FPGA circuiL In the proposed circuit transient performunee of APF is improved The active power fdter circuil has been built and teste6 and some illustrative, experimental results are uIso presented...
-
Introduction to the special issue on machine learning in acoustics
PublicationWhen we started our Call for Papers for a Special Issue on “Machine Learning in Acoustics” in the Journal of the Acoustical Society of America, our ambition was to invite papers in which machine learning was applied to all acoustics areas. They were listed, but not limited to, as follows: • Music and synthesis analysis • Music sentiment analysis • Music perception • Intelligent music recognition • Musical source separation • Singing...
-
Active feedback noise control in the presence of impulsive disturbances
PublicationThe problem of active feedback control of a narrowband acoustic noise in the presence of impulsive disturbances is considered. It is shown that, when integrated with appropriately designed outlier detector, the proposed earlier feedback control algorithm called SONIC is capable of isolating and rejecting noise pulses. According to our tests this guarantees stable and reliable operation of the closed-loop noise cancelling...
-
Social learning in cluster initiatives
PublicationPurpose – The purpose of the paper is to portray social learning in cluster initiatives (CIs), namely: 1) to explore, with the lens of the communities of practice (CoPs) theory, in what ways social learning occurs in CIs; 2) to discover how various CoPs emerge and evolve in CIs to facilitate a collective journey in their learning process. Subsequently, the authors address the research questions: In what ways does social learning...
-
TensorHive: Management of Exclusive GPU Access for Distributed Machine Learning Workloads
PublicationTensorHive is a tool for organizing work of research and engineering teams that use servers with GPUs for machine learning workloads. In a comprehensive web interface, it supports reservation of GPUs for exclusive usage, hardware monitoring, as well as configuring, executing and queuing distributed computational jobs. Focusing on easy installation and simple configuration, the tool automatically detects the available computing...
-
Interpretable deep learning approach for classification of breast cancer - a comparative analysis of multiple instance learning models
PublicationBreast cancer is the most frequent female cancer. Its early diagnosis increases the chances of a complete cure for the patient. Suitably designed deep learning algorithms can be an excellent tool for quick screening analysis and support radiologists and oncologists in diagnosing breast cancer.The design of a deep learning-based system for automated breast cancer diagnosis is not easy due to the lack of annotated data, especially...
-
Adjusted SpikeProp algorithm for recurrent spiking neural networks with LIF neurons
PublicationA problem related to the development of a supervised learning method for recurrent spiking neural networks is addressed in the paper. The widely used Leaky-Integrate-and-Fire model has been adopted as a spike neuron model. The proposed method is based on a known SpikeProp algorithm. In detail, the developed method enables gradient descent learning of recurrent or multi-layer feedforward spiking neural networks. The research included...
-
Model szkolenia "Blended learning" z wykorzystaniem platformy Oracle I-learning.
PublicationW artykule zaproponowano modele organizacyjne szkoleń "blended learning", które pokazują możliwości współpracy firm prywatnych z instytucjami edukacyjnymi w dziedzinie e-learningu. W ramach wspólnego eksperymentu firm Oracle, Incenti S.A., WiedzaNet Sp. z o.o. oraz Centrum Edukacji Niestacjonarnej Politechniki Gdańskiej w semestrze letnim roku akademickiego 2003/2004 udostępniony będzie kurs dla studentów Wydziału Inzynierii Lądowej...
-
E-learning versus traditional learning - Polish case
PublicationE-learning jest współczesnym fenomenem, który pozwala na dostęp do kształcenia i treści edukacyjnych, niezależnie od czasu i miejsca, dla każdego użytkownika. E-learnig tworzy ogromne możliwości dla uczelni akademickich, organizacji, instytucji komercyjnych i szkoleniowych, dostarczając na żądanie kształcenia i szkoleń w wirtualnym środowisku. Student może stworzyć własny plan kształcenia, dostosowując go do swojej pracy i sytuacji...
-
Raw data of AuAg nanoalloy plasmon resonances used for machine learning method
Open Research DataRaw data used for machine learning process. UV-vis measurements of AuAg alloyed nanostructures created from thin films. Plasmonic band position dependence on fabrication parameters. Small presentation reviewing achieved structures and their properties.
-
Revisiting Supervision for Continual Representation Learning
Publication"In the field of continual learning, models are designed to learn tasks one after the other. While most research has centered on supervised continual learning, there is a growing interest in unsupervised continual learning, which makes use of the vast amounts of unlabeled data. Recent studies have highlighted the strengths of unsupervised methods, particularly self-supervised learning, in providing robust representations. The improved...
-
Designing acoustic scattering elements using machine learning methods
PublicationIn the process of the design and correction of room acoustic properties, it is often necessary to select the appropriate type of acoustic treatment devices and make decisions regarding their size, geometry, and location of the devices inside the room under the treatment process. The goal of this doctoral dissertation is to develop and validate a mathematical model that allows predicting the effects of the application of the scattering...
-
Predicting emotion from color present in images and video excerpts by machine learning
PublicationThis work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...
-
ESTIMATION OF NONSTATIONARY HARMONIC SIGNALS AND ITS APPLICATION TO ACTIVE CONTROL OF MRI NOISE
PublicationA new adaptive comb filtering algorithm, capable of tracking the fundamental frequency and amplitudes of different frequency components of a nonstationary harmonic signal embedded in white measurement noise, is proposed. Frequency tracking characteristics of the new scheme are studied analytically, proving (under Gaussian assumptions and optimal tuning) its statistical efficiency for quasi-linear frequency changes. Laboratory tests...
-
Machine Learning and Deep Learning Methods for Fast and Accurate Assessment of Transthoracic Echocardiogram Image Quality
PublicationHigh-quality echocardiogram images are the cornerstone of accurate and reliable measurements of the heart. Therefore, this study aimed to develop, validate and compare machine learning and deep learning algorithms for accurate and automated assessment of transthoracic echocardiogram image quality. In total, 4090 single-frame two-dimensional transthoracic echocardiogram...
-
Multiple-channel frequency-adaptive active vibration control using SONIC
PublicationSONIC (self-optimizing narrowband interference canceller) is an acronym of a new approach to rejection of sinusoidal disturbances acting at the output of a discretetime stable linear plant with unknown and possibly timevarying dynamics. The paper presents two frequency-adaptive extensions of the multivariate SONIC algorithm. The efficacy of the proposed solutions is tested using our laboratory-scale active vibration control plant.
-
Method of selecting the LS-SVM algorithm parameters in gas detection process
PublicationIn this paper we showed the method of resistive gas sensors data processing. The UV irradiation and temperature modulation was applied to improve gas sensors’ selectivity and sensitivity. Noise voltage across the sensor’s terminals (proportional to its resistance fluctuations) was recorded to estimate power spectral density. This function was an input data vector for LS-SVM (least squares – support vector machine) algorithm, which...
-
Agnieszka Landowska dr hab. inż.
PeopleAgnieszka Landowska works for Gdansk University of Technology, FETI, Department of Software Engineering. Her research concentrates on usability, accessibility and technology adoption, as well as affective computing methods. She initiated Emotions in HCI Research Group and conducts resarch on User eXperiene evaluation of applications and other technologies.
-
Neural networks and deep learning
PublicationIn this chapter we will provide the general and fundamental background related to Neural Networks and Deep Learning techniques. Specifically, we divide the fundamentals of deep learning in three parts, the first one introduces Deep Feed Forward Networks and the main training algorithms in the context of optimization. The second part covers Convolutional Neural Networks (CNN) and discusses their main advantages and shortcomings...
-
Determination of the active ingredient in pharmaceutical gel formulation by NIR spectroscopy
PublicationPharmaceuticals of their intended must be thoroughly controlled. The traditional analytical methods are very costly and time consuming. NIR spectroscopy allows to analyze pharmaceutical materials very quickly and with very low costs. First pharmaceutical applications of the NIR spectroscopy appeared with some incuriosity in the late 1960s. Application of NIR in the contemporary pharmaceutical industry is very large. The most common...
-
Research on Linear Actuators for Active Foil Bearings
PublicationActive foil bearings are a kind of gas foil bearing. They contain actuators which allow for modification of the bearing sleeve size and the shape of the lubrication gap. Rotor vibrations can be actively controlled by these changes. It is possible, among other things, to reduce the starting torque, control the vibration amplitude at different speeds and improve operational safety. Prototypes of active foil bearings are being developed...
-
Research and applications of active bearings: A state-of-the-art review
PublicationControllable/active bearings are mainly associated with active magnetic bearings (AMBs), whereas active bearing control is also found in many types of bearings, e.g. fluid, gas and hybrid bearings. The article presents a review of the literature describing the structure and results of studies of active bearings. Active control brings a number of benefits resulting in the fact that their use as a support for rotors becomes increasingly...
-
Active Suppression of Nonstationary Narrowband Acoustic Disturbances
PublicationIn this chapter, a new approach to active narrowband noise control is presented. Narrowband acoustic noise may be generated, among others, by rotating parts of electro-mechanical devices, such as motors, turbines, compressors, or fans. Active noise control involves the generation of “antinoise”, i.e., the generation of a sound that has the same amplitude, but the opposite phase, as the unwanted noise, which causes them to interfere...
-
Active Dynamic Thermography in Medical Diagnostics
PublicationThis is an overview of active thermal imaging methods in medical diagnostics using external thermal stimulation. In this chapter, several clinical cases diagnosed using the active dynamic thermography method, ADT, are presented. Features of this technology are discussed and main advantages underlined. Applications in skin burn diagnostics and quantitative evaluation leading to modern classification of burned patients for further...
-
Advancing Solar Energy: Machine Learning Approaches for Predicting Photovoltaic Power Output
PublicationThis research is primarily concentrated on predicting the output of photovoitaic power, an essential field in the study of renewable energy. The paper comprehensively reviews various forecasting methodologies, transitioning from conventional physical and statistical methods to advanced machine learning (ML) techniques. A significant shift has been observed from traditional point forecasting to machine learning-based forecasting...
-
Blended Learning in Teaching Safety of Electrical Installations
PublicationBlended learning becomes more commonly used in teaching information technology or other subjects, which involve practice in computer laboratories. In case of subjects with no access to computer rooms blended learning supports lecturing and teaching classes e.g. interactive lessons. The article presents the use of blended learning forms in Gdansk University of Technology in teaching the subject of Safety of Electrical Installations....
-
Voice command recognition using hybrid genetic algorithm
PublicationAbstract: Speech recognition is a process of converting the acoustic signal into a set of words, whereas voice command recognition consists in the correct identification of voice commands, usually single words. Voice command recognition systems are widely used in the military, control systems, electronic devices, such as cellular phones, or by people with disabilities (e.g., for controlling a wheelchair or operating a computer...
-
Comprehensive compensation of grid current distortion by shunt active power filters
PublicationThe paper presents a comprehensive approach to the compensation of grid current distortion in shunt active power filter systems. Four sources of current distortion are addressed: imperfect grid synchronization caused by the distortion in the grid voltages, time delays in the evaluation of grid voltages and computation of compensating currents, fluctuations of the dc bus voltage, and the distortion of inverter output voltages due...
-
Interactive Information Retrieval Algorithm for Wikipedia Articels
PublicationThe article presents an algorithm for retrieving textual information in documents collection. The algorithm employs a category system that organizers the repository and using interaction with user improves search precision. The algorithm was implemented for simple English Wikipedia and the first evaluation results indicates the proposed method can help to retrieve information from large document repositories.
-
Predictions of cervical cancer identification by photonic method combined with machine learning
PublicationCervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, there is no general measurement method with a calibrated standard. The problem can be solved with the measurement system being a fusion of an optoelectronic sensor and machine learning algorithm to provide reliable assistance for doctors...
-
New Indoor Positioning Algorithm for Distance Measurements
PublicationIn the paper a new indoor positioning algorithm is presented. This algorithm takes into account selected features of radio wave propagation in indoor environment. This results in improvement in accuracy of calculated position estimates. A comparative analysis of this new algorithm with Chan and Foy algorithms was made and described in the paper. This comparative analysis was made with utilization of real radio distance measurements.
-
An Approximation of the Zero Error Capacity by a Greedy Algorithm.
PublicationWe present a greedy algorithm that determines a lower bound on the zero error capacity. The algorithm has many new advantages, e.g., it does not store a whole product graph in a computer memory and it uses the so-called distributions in all dimensions to get a better approximation of the zero error capacity. We also show an additional application of our algorithm.
-
An Approximation of the Zero Error Capacity by a Greedy Algorithm
PublicationWe present a greedy algorithm that determines a lower bound on the zero error capacity. The algorithm has many new advantages, e.g., it does not store a whole product graph in a computer memory and it uses the so-called distributions in all dimensions to get a better approximation of the zero error capacity. We also show an additional application of our algorithm.
-
Active and Passive Electronic Components
Journals -
Frontiers in Sports and Active Living
Journals -
Comparison of active proximity radars for the wearable devices
PublicationTwo methods of object position and movement estimation in relation to the user of smart glasses were investigated. An active infrared and ultrasonic methods of the obstacle detection were presented and compared. Application of these methods depend on active transducers type (physical medium used), geometry and surface properties of detected objects and their movement direction and speed. In the article properties of both detectors...
-
Edge-Computing based Secure E-learning Platforms
PublicationImplementation of Information and Communication Technologies (ICT) in E-Learning environments have brought up dramatic changes in the current educational sector. Distance learning, online learning, and networked learning are few examples that promote educational interaction between students, lecturers and learning communities. Although being an efficient form of real learning resource, online electronic resources are subject to...
-
Federated Learning in Healthcare Industry: Mammography Case Study
PublicationThe paper focuses on the role of federated learning in a healthcare environment. The experimental setup involved different healthcare providers, each with their datasets. A comparison was made between training a deep learning model using traditional methods, where all the data is stored in one place, and using federated learning, where the data is distributed among the workers. The experiment aimed to identify possible challenges...
-
Termination functions for evolutionary path planning algorithm
PublicationIn this paper a study of termination functions (stop criterion) for evolutionary path planning algorithm is presented. Tested algorithm is used to determine close to optimal ship paths in collision avoidance situation. For this purpose a path planning problem is defined. A specific structure of the individual path and fitness function is presented. For the simulation purposes a close to real tested environment is created. Five...
-
Software Factory project for enhancement of student experiential learning
PublicationProviding opportunities for students to work on real-world software development projects for real customers is critical to prepare students for the IT industry. Such projects help students to understand what they will face in the industry and experience real customer interaction and challenges in collaborative work. To provide this opportunity in an academic environment and enhance the learning and multicultural teamwork experience,...
-
Comparison of new position estimation algorithm for indoor environment
PublicationIn the paper a new position estimation algorithm based on distance measurements is presented. This algorithm is dedicated for indoor environments. In the paper the new algorithm is compared with Chan algorithm. For the comparison were used real measurements conducted inside a building.