Search results for: MOLECULAR MODELING
-
Time-of-flight electron scattering from molecular hydrogen: Benchmark cross sections for excitation of the X1Σ+g→b3Σ+u transition
PublicationThe electron impact X1Σ+g to b3Σ+u transition in molecular hydrogen is one of the most important dissociation pathways to forming atomic hydrogen atoms, and is of great importance in modeling astrophysical and industrial plasmas where molecular hydrogen is a substantial constituent. Recently it has been found that the convergent close-coupling (CCC) cross sections of Zammit et al. [Phys. Rev. A 95, 022708 (2017)] are up to a factor...
-
Quest for the Molecular Basis of Improved Selective Toxicity of All-Trans Isomers of Aromatic Heptaene Macrolide Antifungal Antibiotics
PublicationThree aromatic heptaene macrolide antifungal antibiotics, Candicidin D, Partricin A (Gedamycin) and Partricin B (Vacidin) were subjected to controlled cis-trans to all trans photochemical isomerization. The obtained all-trans isomers demonstrated substantially improved in vitro selective toxicity in the Candida albicans cells: human erythrocytes model. This effect was mainly due to the diminished hemotoxicity. The molecular modeling...
-
Modeling lignin extraction with ionic liquids using machine learning approach
PublicationLignin, next to cellulose, is the second most common natural biopolymer on Earth, containing a third of the organic carbon in the biosphere. For many years, lignin was perceived as waste when obtaining cellulose and hemicellulose and used as a biofuel for the production of bioenergy. However, recently, lignin has been considered a renewable raw material for the production of chemicals and materials to replace petrochemical resources....
-
Role of Glycosaminoglycans in Procathepsin B Maturation: Molecular Mechanism Elucidated by a Computational Study
Publication -
Free Energies of the Disassembly of Viral Capsids from a Multiscale Molecular Simulation Approach
Publication -
Synthesis and Cholinesterase Inhibitory Activity of N-Phosphorylated /N-Tiophosphorylated Tacrine
PublicationNovel phosphorus and thiophosphorus tacrine derivatives were designed, synthesized and their biological activity and molecular modeling was investigated as a new potential anti-Alzheimer's disease (AD) agents. All new synthesized compound exhibited lower toxicity against neuroblastoma cell line (SH-SY5Y) in comparison with tacrine. Two analogues in the series, 7 and 9, demonstrated lack of cytotoxicity against hepatocellular cells...
-
Enhanced trap-assisted recombination in organic semiconductors
PublicationAn analytical model to describe the interaction of excitons and charge transfer states with deep traps is formulated for the case of molecular materials. Here, we have considered the influence of a trap-assisted recombination on this phenomenon. The final expression for the effective recombination rate has been derived from the Shockley–Read–Hall theory and kinetic equations which characterize different photophysical processes....
-
Structural factors affecting affinity of cytotoxic oxathiole-fused chalcones toward tubulin
PublicationSynthesis, in vitro cytotoxic activity, and interaction with tubulin of (E)-1-(6-alkoxybenzo[d][1,3]oxathiol- 5-yl)-3-phenylprop-2-en-1-one derivatives (2) are described. Some of the compounds demonstrated cytotoxic activity at submicromolar concentrations, and the activity could be related to interaction with tubulin at the colchicine binding site. Interaction of selected derivatives with tubulinwas evaluated using molecular modeling,...
-
Searching for Solvents with an Increased Carbon Dioxide Solubility Using Multivariate Statistics
PublicationIonic liquids (ILs) are used in various fields of chemistry. One of them is CO2 capture, a process that is quite well described. The solubility of CO2 in ILs can be used as a model to investigate gas absorption processes. The aim is to find the relationships between the solubility of CO2 and other variables—physicochemical properties and parameters related to greenness. In this study, 12 variables are used to describe a dataset...
-
An insight into the mixed quantum mechanical-molecular dynamics simulation of a ZnII-Curcumin complex with a chosen DNA sequence that supports experimental DNA binding investigations
PublicationAn important aspect of research pertaining to Curcumin (HCur) is the need to arrest its degradation in aqueous solution and in biological milieu. This may be achieved through complex formation with metal ions. For this reason, a complex of HCur was prepared with ZnII, that is not likely to be active in redox pathways, minimizing further complications. The complex is monomeric, tetrahedral, with one HCur, an acetate and a molecule...
-
A Model of Thermal Energy Storage According to the Convention of Bond Graphs (BG) and State Equations (SE)
PublicationThe main advantage of the use of the Bond Graphs method and State Equations for modeling energy systems with a complex structure (marine power plants, hybrid vehicles, etc.) is the ability to model the system components of different physical nature using identical theoretical basis. The paper presents a method of modeling thermal energy storage, which is in line with basic BG theory. Critical comments have been put forward concerning...
-
Influence of S-Oxidation on Cytotoxic Activity of Oxathiole-Fused Chalcones
PublicationSynthesis, in vitro cytotoxic activity, and interaction with tubulin of oxidized, isomeric 1-(5-alkoxybenzo[d] [1,3]oxathiol-6-yl)-3-phenylprop-2-en-1-ones and 1-(6- alkoxybenzo[d][1,3]oxathiol-5-yl)-3-phenylprop-2-en-1- ones are described. Most of the compounds demonstrated cytotoxic activity at submicromolar concentrations. It was found that oxidation of sulfur atom of the oxathiole-fused chalcones strongly influenced activity...
-
A new open-source software developed for numerical simulations usingdiscrete modeling methods
PublicationThe purpose of this work is to present the development of an open-source software based on a discrete description of matter applied to study the behavior of geomaterials. This software uses Object Oriented Programming techniques, and its methodology design uses three different methods, which are the Discrete Element Method (DEM) [F. Donzé, S.A. Magnier, Formulation of a three-dimensional numerical model of brittle behavior, Geophys....
-
Antifungal Activity of Homoaconitate and Homoisocitrate Analogs
PublicationThirteen structural analogs of two initial intermediates of the L-alpha-aminoadipate pathway of L-lysine biosynthesis in fungi have been designed and synthesized, including fluoro- and epoxy-derivatives of homoaconitate and homoisocitrate. Some of the obtainedcompounds exhibited at milimolar range moderate enzyme inhibitory properties against homoaconitase and/or homoisocitrate dehydrogenase of Candida albicans. The structural...
-
Texture or Linker? Competitive Patterning of Receptor Assembly toward Ultra-Sensitive Impedimetric Detection of Viral Species at Gold-Nanotextured Titanium Surfaces
PublicationIn this work, we study the electrodes with a periodic matrix of gold particles pattered by titanium dimples and modified by 3-mercaptopropionic acid (MPA) followed by CD147 receptor grafting for specific impedimetric detection of SARS-CoV-2 viral spike proteins. The synergistic DFT and MM/MD modeling revealed that MPA adsorption geometries on the Au–Ti surface have preferential and stronger binding patterns through the carboxyl...
-
Rotational state-changing collisions of C2H− and C2N− anions with He under interstellar and cold ion trap conditions: A computational comparison
PublicationWe present an extensive range of quantum calculations for the state-changing rotational dynamics involving two simple molecular anions that are expected to play some role in the evolutionary analysis of chemical networks in the interstellar environments, C2H− (X1Σ+) and C2N− (X3Σ−), but for which inelastic rates are only known for C2H−. The same systems are also of direct interest in modeling selective photo-detachment experiments...
-
Dominant Pathways of Adenosyl Radical-Induced DNA Damage Revealed by QM/MM Metadynamics
PublicationBrominated nucleobases sensitize double stranded DNA to hydrated electrons, one of the dominant genotoxic species produced in hypoxic cancer cells during radiotherapy. Such radiosensitizers can therefore be administered locally to enhance treatment efficiency within the solid tumor while protecting the neighboring tissue. When a solvated electron attaches to 8-bromoadenosine, a potential sensitizer, the dissociation of bromide...
-
Modeling the Influence of Salts on the Critical Micelle Concentration of Ionic Surfactants
PublicationWe show for the first time that a phenomenological, augmented volume-based thermodynamics (aVBT) model is capable to predict the critical micelle concentrations of ionic surfactants, including ionic liquids, with added salts. The model also adjusts for the type of salt added by including its molecular volume, which might form a connection to the Hofmeister effect. The other physico-chemically relevant quantities included in the...
-
Recent Developments in Data-Assisted Modeling of Flexible Proteins
PublicationMany proteins can fold into well-defined conformations. However, intrinsically-disordered proteins (IDPs) do not possess a defined structure. Moreover, folded multi-domain proteins often digress into alternative conformations. Collectively, the conformational dynamics enables these proteins to fulfill specific functions. Thus, most experimental observables are averaged over the conformations that constitute an ensemble. In this...
-
Intermolecular Interactions as a Measure of Dapsone Solubility in Neat Solvents and Binary Solvent Mixtures
PublicationDapsone is an effective antibacterial drug used to treat a variety of conditions. However, the aqueous solubility of this drug is limited, as is its permeability. This study expands the available solubility data pool for dapsone by measuring its solubility in several pure organic solvents: N-methyl-2-pyrrolidone (CAS: 872-50-4), dimethyl sulfoxide (CAS: 67-68-5), 4-formylmorpholine (CAS: 4394-85-8), tetraethylene pentamine (CAS:...
-
Retention modeling of some saccharides separated on an amino column.
PublicationUsing an amino column (Supelcosil LC-NH2) and different mixtures of acetonitrile-water, quantitative structure-retention relationship models are discussed. These models are based on computed molecular descriptors representing numerically structured features of some saccharides. The obtained results are underlining the lipophilicity/hydrophilicity balance, and how this is controlling the separation of the saccharides. The resulting...
-
Tuning Ferulic Acid Solubility in Choline-Chloride- and Betaine-Based Deep Eutectic Solvents: Experimental Determination and Machine Learning Modeling
PublicationDeep eutectic solvents (DES) represent a promising class of green solvents, offering particular utility in the extraction and development of new formulations of natural compounds such as ferulic acid (FA). The experimental phase of the study undertook a systematic investigation of the solubility of FA in DES, comprising choline chloride or betaine as hydrogen bond acceptors and six different polyols as hydrogen bond donors....
-
The Role of Electrostatics in Enzymes: Do Biomolecular Force Fields Reflect Protein Electric Fields?
PublicationPreorganization of large, directionally oriented, electric fields inside protein active sites has been proposed as a crucial contributor to catalytic mechanism in many enzymes, and it may be efficiently investigated at the atomistic level with molecular dynamics simulations. Here, we evaluate the ability of the AMOEBA polarizable force field, as well as the additive Amber ff14SB and Charmm C36m models, to describe the electric...
-
Intramolecular Proton Transfer in the Radical Anion of Cytidine Monophosphate Sheds Light on the Sensitivities of Dry vs Wet DNA to Electron Attachment-Induced Damage
PublicationSingle-strand breaks (SSBs) induced via electron attachment were previously observed in dry DNA under ultrahigh vacuum (UHV), while hydrated electrons were found not able to induce this DNA damage in an aqueous solution. To explain these findings, crossed electron-molecular beam (CEMB) and anion photoelectron spectroscopy (aPES) experiments coupled to density functional theory (DFT) modeling were used to demonstrate the fundamental...
-
Novel chalcone-derived pyrazoles as potential therapeutic agents for the treatment of non-small cell lung cancer
PublicationLung cancer is considered to account for approximately one-fifth of all malignant tumor-related deaths worldwide and is therefore one of the most lethal malignancies. Pyrazole scaffold possesses a wide range of biological and pharmacological activities, which play important roles in medicinal chemistry. The present study reports the synthesis and in vitro biological characterization of nine pyrazoles derived from chalcones as potential...
-
Temperature-dependent structure-property modeling of viscosity for ionic liquids
PublicationIn this paper we present the methodology for assessing the ionic liquids' viscosity at six temperature points (25, 35, 45, 50, 60 and 70 [C]), which utilizes only the in silico approach. The main idea of such assessment is based on the "correction equation" describing the correlation between experimentally measured viscosity and theoretically derived density (calculated with use of molecular mechanics), given at 6 different temperature...
-
Dendron to Central Core S1–S1 and S2–Sn (n>1) Energy Transfers in Artificial Special Pairs Containing Dendrimers with Limited Numbers of Conformations
PublicationTwo dendrimers consisting of a cofacial free-base bisporphyrin held by a biphenylene spacer and functionalized with 4-benzeneoxomethane (5-(4-benzene)tri-10,15,20-(4-n-octylbenzene)zinc(II)porphyrin) using either five or six of the six available meso-positions, have been synthesized and characterized as models for the antenna effect in Photosystems I and II. The presence of the short linkers, -CH2O-, and long C8H17 soluble side...
-
Performance of electrochemical immunoassays for clinical diagnostics of SARS-CoV-2 based on selective nucleocapsid N protein detection: Boron-doped diamond, gold and glassy carbon evaluation
PublicationThe 21st century has already brought us a plethora of new threats related to viruses that emerge in humans after zoonotic transmission or drastically change their geographic distribution or prevalence. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first spotted at the end of 2019 to rapidly spread in southwest Asia and later cause a global pandemic, which paralyzes the world since then. We have designed novel...
-
Modeling protein structures with the coarse-grained UNRES force field in the CASP14 experiment
PublicationThe UNited RESidue (UNRES) force field was tested in the 14th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP14), in which larger oligomeric and multimeric targets were present compared to previous editions. Three prediction modes were tested (i) ab initio (the UNRES group), (ii) contact-assisted (the UNRES- contact group), and (iii) template-assisted (the UNRES-template...
-
Mass spectrometry based identification of geometric isomers during metabolic stability study of a new cytotoxic sulfonamide derivatives supported by quantitative structure-retention relationships
PublicationA set of 15 new sulphonamide derivatives, presenting antitumor activity have been subjected to a metabolic stability study. The results showed that besides products of biotransformation, some additional peaks occurred in chromatograms. Tandem mass spectrometry revealed the same mass and fragmentation pathway, suggesting that geometric isomerization occurred. Thus, to support this hypothesis, quantitative structure-retention relationships...
-
Performance of the AMOEBA Water Model in the Vicinity of QM Solutes: A Diagnosis Using Energy Decomposition Analysis
PublicationThe importance of incorporating solvent polarization effects into the modeling of solvation processes has been well-recognized, and therefore a new generation of hybrid quantum mechanics/molecular mechanics (QM/MM) approaches that accounts for this effect is desirable. We present a fully self-consistent, mutually polarizable QM/MM scheme using the AMOEBA force field, in which the total energy of the system is variationally minimized...
-
Improvements and new functionalities of UNRES server for coarse-grained modeling of protein structure, dynamics, and interactions
PublicationIn this paper we report the improvements and extensions of the UNRES server (https://unres-server.chem.ug.edu.pl) for physics-based simulations with the coarse-grained UNRES model of polypeptide chains. The improvements include the replacement of the old code with the recently optimized one and adding the recent scale-consistent variant of the UNRES force field, which performs better in the modeling of proteins with the β and the...
-
Continuum contact model for friction between graphene sheets that accounts for surface anisotropy and curvature
PublicationUnderstanding the interaction mechanics between graphene layers and co-axial carbon nanotubes (CNTs) is essential for modeling graphene and CNT-based nanoelectromechanical systems. This work proposes a new continuum contact model to study interlayer interactions between curved graphene sheets. The continuum model is calibrated and validated using molecular dynamics (MD) simulations. These are carried out employing the reactive...
-
Preparation and characterization of dummy-template molecularly imprinted polymers as potential sorbents for the recognition of selected polybrominated diphenyl ethers
PublicationThe main aim of this work was to conduct the preliminary/basic research concerning the preparation process of a new dummy molecularly imprinted polymer (DMIP) materials. Developed DMIPs were proposed as a sorption material in solid-phase extraction (SPE) technique for recognition of selected low mass polybrominated diphenyl ethers (PBDEs) e PBDE-47 and PBDE-99. Four new DMIPs were synthesized employing bulky polymerization technique...
-
3D Computer Model of the Hip Joint Cartilage
PublicationThis paper presents 3D computer model of the hip joint cartilage in the ANSYS program. Model is made on the basis of anatomy and collected data on the material constants of bone and cartilage components. Analysis and comparison of biochemical model, viscoelastic and molecular mixed - aggregation serves to facilitate the creation of the next model of reality, which could be used in the design of joint prostheses. The correctness...
-
Synthesis and biological evaluation of fluorinated N-benzoyl and N-phenylacetoyl derivatives of 3-(4-aminophenyl)-coumarin-7-O-sulfamate as steroid sulfatase inhibitors
PublicationIn the present work, we report convenient methods for the synthesis of 3-(4-aminophenyl)-coumarin-7-O-sulfamate derivatives N-acylated with fluorinated analogues of benzoic or phenylacetic acid as steroid sulfatase (STS) inhibitors. The design of these potential STS inhibitors was supported by molecular modeling techniques. Additionally, computational docking methods were used to determine the binding modes of the synthesized inhibitors...
-
The role of tungsten in formation of active sites for no SCR on the V-W-O catalyst surface — quantum chemical modeling (DFT)
Publication -
H2O˙+ and OH+ reactivity versus furan: experimental low energy absolute cross sections for modeling radiation damage
PublicationRadiotherapy is one of the most widespread and efficient strategies to fight malignant tumors. Despite its broad application, the mechanisms of radiation-DNA interaction are still under investigation. Theoretical models to predict the effects of a particular delivered dose are still in their infancy due to the difficulty of simulating a real cell environment, as well as the inclusion of a large variety of secondary processes. This...
-
Structural, magnetic and spectral properties of tetrahedral cobalt(II) silanethiolates: a variety of structures and manifestation of field-induced slow magnetic relaxation
PublicationBlue crystals of five heteroleptic cobalt(II) silanethiolates 1–5 have been obtained by the reaction of [Co{SSi (tBuO)3}2(NH3)]2 with aminopyridines and aminomethylpyridines at an appropriate molar ratio and their structural, spectral, thermal and magnetic properties have been established and described. All complexes 1–5 contain Co(II) ions in a tetrahedral CoN2S2 environment formed by (tBuO)3SiS− residues and pyridines and present...
-
ESCASA : Analytical estimation of atomic coordinates from coarse‐grained geometry for nuclear‐magnetic‐resonance ‐assisted protein structure modeling. I. Backbone and Hβ protons
PublicationA method for the estimation of coordinates of atoms in proteins from coarse-grained geometry by simple analytical formulas (ESCASA), for use in nuclear-magnetic-resonance (NMR) data-assisted coarse-grained simulations of proteins is proposed. In this paper, the formulas for the backbone Hα and amide (HN) protons, and the side-chain Hβ protons, given the Cα-trace, have been derived and parameterized, by using the interproton distances...
-
Mechanics of Micro- and Nano-Size Materials and Structures
PublicationNanotechnology knowledge is always looking to expand its boundaries to achieve the mostsignificant benefit to human life and meet the growing needs of today. In this case, we can refer tomicro- and nanosensors in micro/nano-electromechanical systems (MEMS/NEMS). These electricaldevices can detect minimal physical stimuli up to one nanometer in size. Today, micro/nano-sensordevices are widely used in the...
-
A Hierarchical Multiscale Approach to Protein Structure Prediction: Production of Low‐Resolution Packing Arrangements of Helices and Refinement of the Best Models with a United‐Residue Force Field
Publication -
Optimal Distribution of the Nonoverlapping Conducting Disks
Publication -
Conductivity of Fibre Composites with Fractures on the Boundary of Inclusions
Publication -
R&D in a post centrally-planned economy: The macroeconomic effects in Poland
Publication -
The effective elastic properties of human trabecular bone may be approximated using micro-finite element analyses of embedded volume elements.
PublicationBoundary conditions (BCs) and sample size affect the measured elastic properties of cancellous bone. Samples too small to be representative appear stiffer under kinematic uniform BCs (KUBCs) than under periodicity-compatible mixed uniform BCs (PMUBCs). To avoid those effects, we propose to determine the effective properties of trabecular bone using an embedded configuration. Cubic samples of various sizes (2.63, 5.29, 7.96, 10.58...
-
Modeling the debonding process of osseointegrated implants due to coupled adhesion and friction
PublicationCementless implants have become widely used for total hip replacement surgery. The long-term stability of these implants is achieved by bone growing around and into the rough surface of the implant, a process called osseointegration. However, debonding of the bone–implant interface can still occur due to aseptic implant loosening and insufficient osseointegration, which may have dramatic consequences. The aim of this work is to...
-
Prediction of Protein Structure by Template-Based Modeling Combined with the UNRES Force Field
Publication -
Use of Restraints from Consensus Fragments of Multiple Server Models To Enhance Protein-Structure Prediction Capability of the UNRES Force Field
Publication -
A Maximum-Likelihood Approach to Force-Field Calibration
Publication