Search results for: NEURAL NETWORK
-
Diagnosing wind turbine condition employing a neural network to the analysis of vibroacoustic signals
PublicationIt is important from the economic point of view to detect damage early in the wind turbines before failures occur. For this purpose, a monitoring device was built that analyzes both acoustic signals acquired from the built-in non-contact acoustic intensity probe, as well as from the accelerometers, mounted on the internal devices in the nacelle. The signals collected in this way are used for long-term training of the autoencoder...
-
EPILEPTIC BEHAVIOR WITH A DISTINGUISHED PREICTAL PERIOD IN A LARGE-SCALE NEURAL NETWORK MODEL
PublicationWe present a neural network model capable of reproducing focal epileptic behavior. An important property of our model is the distinguished preictal state. This novel feature may shed light on the pathologi-cal mechanisms of seizure generation and, in perspective, help develop new therapeutic strategies to manage refractory partial epilepsy.
-
Development of a tropical disease diagnosis system using artificial neural network and GIS
PublicationExpert systems for diagnosis of tropical diseases have been developed and implemented for over a decade with varying degrees of success. While the recent introduction of artificial neural networks has helped to improve the diagnosis accuracy of such systems, this aspect is still negatively affected by the number of supported diseases. A large number of supported diseases usually corresponds to a high number of overlapping symptoms,...
-
Benchmarking Deep Neural Network Training Using Multi- and Many-Core Processors
PublicationIn the paper we provide thorough benchmarking of deep neural network (DNN) training on modern multi- and many-core Intel processors in order to assess performance differences for various deep learning as well as parallel computing parameters. We present performance of DNN training for Alexnet, Googlenet, Googlenet_v2 as well as Resnet_50 for various engines used by the deep learning framework, for various batch sizes. Furthermore,...
-
Highlighting interlanguage phoneme differences based on similarity matrices and convolutional neural network
PublicationThe goal of this research is to find a way of highlighting the acoustic differences between consonant phonemes of the Polish and Lithuanian languages. For this purpose, similarity matrices are employed based on speech acoustic parameters combined with a convolutional neural network (CNN). In the first experiment, we compare the effectiveness of the similarity matrices applied to discerning acoustic differences between consonant...
-
Adaptive Hyperparameter Tuning within Neural Network-based Efficient Global Optimization
PublicationIn this paper, adaptive hyperparameter optimization (HPO) strategies within the efficient global optimization (EGO) with neural network (NN)-based prediction and uncertainty (EGONN) algorithm are proposed. These strategies utilize Bayesian optimization and multiarmed bandit optimization to tune HPs during the sequential sampling process either every iteration (HPO-1itr) or every five iterations (HPO-5itr). Through experiments using...
-
Comparison of Deep Neural Network Learning Algorithms for Mars Terrain Image Segmentation
PublicationThis paper is dedicated to the topic of terrain recognition on Mars using advanced techniques based on the convolutional neural networks (CNN). The work on the project was conducted based on the set of 18K images collected by the Curiosity, Opportunity and Spirit rovers. The data were later processed by the model operating in a Python environment, utilizing Keras and Tensorflow repositories. The model benefits from the pretrained...
-
Leveraging Training Strategies of Artificial Neural Network for Classification of Multiday Electromyography Signals
Publication -
Ontology-based text convolution neural network (TextCNN) for prediction of construction accidents
PublicationThe construction industry suffers from workplace accidents, including injuries and fatalities, which represent a significant economic and social burden for employers, workers, and society as a whole.The existing research on construction accidents heavily relies on expert evaluations,which often suffer from issues such as low efficiency, insufficient intelligence, and subjectivity.However, expert opinions provided in construction...
-
Comparison of Selected Neural Network Models Used for Automatic Liver Tumor Segmentation
PublicationAutomatic and accurate segmentation of liver tumors is crucial for the diagnosis and treatment of hepatocellular carcinoma or metastases. However, the task remains challenging due to imprecise boundaries and significant variations in the shape, size, and location of tumors. The present study focuses on tumor segmentation as a more critical aspect from a medical perspective, compared to liver parenchyma segmentation, which is the...
-
Application of fuzzy neural network for supporting measurements and control in a wastewater treatment plant
PublicationOczyszczanie ścieków jest jednym z ważniejszych aspektów ochrony środowiska. Nowoczesne systemy kontroli w oczyszczalniach ścieków pozwalają na poprawę jakości procesu oczyszczania redukując jednocześnie koszty. Systemy kontroli i optymalizacji jakie odkilku lat opracowuje się dla oczyszczalni ścieków, bazują zazwyczaj na skomplikowanych modelach matematycznych. Kluczowym problemem w zastosowaniu tych systemów jest duża liczba...
-
Evolving neural network as a decision support system — Controller for a game of “2048” case study
PublicationThe paper proposes an approach to designing the neuro-genetic self-learning decision support system. The system is based on neural networks being adaptively learned by evolutionary mechanism, forming an evolved neural network. Presented learning algorithm enables for a selection of the neural network structure by establishing or removing of connections between the neurons, and then for a finding the beast suited values of the network...
-
Neural network based algorithm for hand gesture detection in a low-cost microprocessor applications
PublicationIn this paper the simple architecture of neural network for hand gesture classification was presented. The network classifies the previously calculated parameters of EMG signals. The main goal of this project was to develop simple solution that is not computationally complex and can be implemented on microprocessors in low-cost 3D printed prosthetic arms. As the part of conducted research the data set EMG signals corresponding...
-
An automatic selection of optimal recurrent neural network architecture for processes dynamics modelling purposes
PublicationA problem related to the development of algorithms designed to find the structure of artificial neural network used for behavioural (black-box) modelling of selected dynamic processes has been addressed in this paper. The research has included four original proposals of algorithms dedicated to neural network architecture search. Algorithms have been based on well-known optimisation techniques such as evolutionary algorithms and...
-
Artificial Neural Network in Forecasting the Churn Phenomena Among Costumers of IT and Power Supply Services
PublicationThis paper presents an attempt to use an artificial neural network to investigate the churn phenomenon among the customers of a telecommunications operator. An attempt was made to create a data model based on the customer lifetime value (CLV) rather than on activity alone. A multilayered artificial neural network was used for the experiments. The results yielded a 99% successful identification rate for customers in no danger of...
-
TOXIC GASES IDENTIFICATION USING SINGLE ELECTROCATALYTIC SENSOR RESPONSES AND ARTIFICIAL NEURAL NETWORK
PublicationThe need for precise detection of toxic gases drives development of new gas sensors structures and methods of processing the output signals from the sensors. In literature, artificial neural networks are considered as one of the most effective tool for the analysis of gas sensors or sensors arrays responses. In this paper a method of toxic gas components identification using a electrocatalytic gas sensor as a detector and an artificial...
-
Optical Sensor Based Gestures Inference Using Recurrent Neural Network in Mobile Conditions
PublicationIn this paper the implementation of recurrent neural network models for hand gesture recognition on edge devices was performed. The models were trained with 27 hand gestures recorded with the use of a linear optical sensor consisting of 8 photodiodes and 4 LEDs. Different models, trained off-line, were tested in terms of different network topologies (different number of neurons and layers) and different effective sampling frequency...
-
APPLICATION OF STATISTICAL FEATURES AND MULTILAYER NEURAL NETWORK TO AUTOMATIC DIAGNOSIS OF ARRHYTHMIA BY ECG SIGNALS
PublicationAbnormal electrical activity of heart can produce a cardiac arrhythmia. The electrocardiogram (ECG) is a non-invasive technique which is used as a diagnostic tool for cardiac diseases. Non-stationarity and irregu- larity of heartbeat signal imposes many difficulties to clinicians (e.g., in the case of myocardial infarction arrhythmia). Fortunately, signal processing algorithms can expose hidden information within ECG signal contaminated...
-
Predicting Ice Phenomena in a River Using the Artificial Neural Network and Extreme Gradient Boosting
PublicationForecasting ice phenomena in river systems is of great importance because these phenomena are a fundamental part of the hydrological regime. Due to the stochasticity of ice phenomena, their prediction is a difficult process, especially when data sets are sparse or incomplete. In this study, two machine learning models—Multilayer Perceptron Neural Network (MLPNN) and Extreme Gradient Boosting (XGBoost)—were developed to predict...
-
Selection of an artificial pre-training neural network for the classification of inland vessels based on their images
PublicationArtificial neural networks (ANN) are the most commonly used algorithms for image classification problems. An image classifier takes an image or video as input and classifies it into one of the possible categories that it was trained to identify. They are applied in various areas such as security, defense, healthcare, biology, forensics, communication, etc. There is no need to create one’s own ANN because there are several pre-trained...
-
Design and Analysis of Artificial Neural Network (ANN) Models for Achieving Self-Sustainability in Sanitation
PublicationThe present study investigates the potential of using fecal ash as an adsorbent and demonstrates a self-sustaining, optimized approach for urea recovery from wastewater streams. Fecal ash was prepared by heating synthetic feces to 500 °C and then processing it as an adsorbent for urea adsorption from synthetic urine. Since this adsorption approach based on fecal ash is a promising alternative for wastewater treatment, it increases...
-
Dataset Related Experimental Investigation of Chess Position Evaluation Using a Deep Neural Network
PublicationThe idea of training Articial Neural Networks to evaluate chess positions has been widely explored in the last ten years. In this paper we investigated dataset impact on chess position evaluation. We created two datasets with over 1.6 million unique chess positions each. In one of those we also included randomly generated positions resulting from consideration of potentially unpredictable chess moves. Each position was evaluated...
-
The influence of image masks definition onsegmentation results of histopathological imagesusing convolutional neural network
PublicationAbstract—In the era of collecting large amounts of tissue materials, assisting the work of histopathologists with various electronic and information IT tools is an undeniable fact. The traditional interaction between a human pathologist and the glass slide is changing to interaction between an AI pathologist with a whole slide images. One of the important tasks is the segmentation of objects (e.g. cells) in such images. In this...
-
Taking decisions in the diagnostic intelligent systems on the basis information from an artificial neural network
Publication -
Artificial Neural Network (ANN)-Based Voltage Stability Prediction of Test Microgrid Grid
Publication -
Neural network based control system architecture proposal for underwatership hull cleaning robot.
PublicationPrzedstawiono model matematyczny podwodnej głowicy roboczej, oraz określono metodę jej pozycjonowania i orientacji w lokalnym środowisku. Zaproponowano architekturę układu sterowania, opartego na bazie sieci neuronowych, za pomocą którego można sterować podwodnym robotem, przeznaczonym do czyszczenia burt statku.
-
An application of neural network for Structural Health Monitoring of an adaptive wing with an array of FBG sensors
PublicationW pracy przedstwiono możliwości zastoswania sieci czujników FBG i sztucznych sieci neuronowych do detekcji uszkodzeń w poszyciu adaptacyjnego skrzydła.
-
Monitoring Regenerative Heat Exchanger in Steam Power Plant by Making Use of the Recurrent Neural Network
PublicationArtificial Intelligence algorithms are being increasingly used in industrial applications. Their important function is to support operation of diagnostic systems. This paper pesents a new approach to the monitoring of a regenerative heat exchanger in a steam power plant, which is based on a specific use of the Recurrent Neural Network (RNN). The proposed approach was tested using real data. This approach can be easily adapted to...
-
Design of Microstrip UWB Balun Using Quasi-TEM Approach Aided by the Artificial Neural Network
PublicationThe design procedure for UWB balun realized in the microstrip technology is proposed in the paper. The procedure applies Artificial Neural Network which corrects the dimensions of the approximate design found by appropriate scaling of the dimensions of the prototype. The scale coefficients for longitudinal and transverse dimensions of microstrip lines are determined from electromagnetic modeling based on transmission line equations....
-
Modeling and Simulation for Exploring Power/Time Trade-off of Parallel Deep Neural Network Training
PublicationIn the paper we tackle bi-objective execution time and power consumption optimization problem concerning execution of parallel applications. We propose using a discrete-event simulation environment for exploring this power/time trade-off in the form of a Pareto front. The solution is verified by a case study based on a real deep neural network training application for automatic speech recognition. A simulation lasting over 2 hours...
-
Speaker Recognition Using Convolutional Neural Network with Minimal Training Data for Smart Home Solutions
PublicationWith the technology advancements in smart home sector, voice control and automation are key components that can make a real difference in people's lives. The voice recognition technology market continues to involve rapidly as almost all smart home devices are providing speaker recognition capability today. However, most of them provide cloud-based solutions or use very deep Neural Networks for speaker recognition task, which are...
-
Self-Organising map neural network in the analysis of electromyography data of muscles acting at temporomandibular joint.
PublicationThe temporomandibular joint (TMJ) is the joint that via muscle action and jaw motion allows for necessary physiological performances such as mastication. Whereas mandible translates and rotates [1]. Estimation of activity of muscles acting at the TMJ provides a knowledge of activation pattern solely of a specific patient that an electromyography (EMG) examination was carried out [2]. In this work, a Self-Organising Maps (SOMs)...
-
Identification of the Contamination Source Location in the Drinking Water Distribution System Based on the Neural Network Classifier
PublicationThe contamination ingression to the Water Distribution System (WDS) may have a major impact on the drinking water consumers health. In the case of the WDS contamination the data from the water quality sensors may be efficiently used for the appropriate disaster management. In this paper the methodology based on the Learning Vector Quantization (LVQ) neural network classifier for the identification of the contamination source location...
-
Neural network simulator's application to reference performance determination of turbine blading in the heat-flow diagnostics.
PublicationIn the paper, the possibility of application of artificial neural networks to perform the fluid flow calculations through both damaged and undamaged turbine blading was investigated. Preliminary results are presented and show the potentiality of further development of the method for the purpose of heat-flow diagnostics.
-
Performance and Energy Aware Training of a Deep Neural Network in a Multi-GPU Environment with Power Capping
PublicationIn this paper we demonstrate that it is possible to obtain considerable improvement of performance and energy aware metrics for training of deep neural networks using a modern parallel multi-GPU system, by enforcing selected, non-default power caps on the GPUs. We measure the power and energy consumption of the whole node using a professional, certified hardware power meter. For a high performance workstation with 8 GPUs, we were...
-
Wind-wave variability in a shallow tidal sea—Spectral modelling combined with neural network methods
Publication -
Biotrickling filtration of n-butanol vapors: process monitoring using electronic nose and artificial neural network
PublicationBiotrickling filtration is one of the techniques used to reduce odorants in the air. It is based on the aerobic degradation of pollutants by microorganisms located in the filter bed. The research presents the possibility of using the electronic nose prototype combined with artificial neural network for biofiltration process monitoring in terms of reduction in n-butanol concentration and odour intensity of treated air. The study...
-
New Two-center Ellipsoidal Basis Function Neural Network for Fault Diagnosis of Analog Electronic Circuits
PublicationIn the paper a new fault diagnosis-oriented neural network and a diagnostic method for localization of parametric faults in Analog Electronic Circuits (AECs) with tolerances is presented. The method belongs to the class of dictionary Simulation Before Test (SBT) methods. It utilizes dictionary fault signatures as a family of identification curves dispersed around nominal positions by component tolerances of the Circuit Under Test...
-
Classification of Covid-19 using Differential Evolution Chaotic Whale Optimization based Convolutional Neural Network
PublicationCOVID-19, also known as the Coronavirus disease-2019, is an transferrable disease that spreads rapidly, affecting countless individuals and leading to fatalities in this worldwide pandemic. The precise and swift detection of COVID-19 plays a crucial role in managing the pandemic's dissemination. Additionally, it is necessary to recognize COVID-19 quickly and accurately by investigating chest x-ray images. This paper proposed a...
-
Mutual Coupling Reduction in Antenna Arrays Using Artificial Intelligence Approach and Inverse Neural Network Surrogates
PublicationThis paper presents a novel approach to reduce undesirable coupling in antenna arrays using custom-designed resonators and inverse surrogate modeling. To illustrate the concept, two stand-ard patch antenna cells with 0.07λ edge-to-edge distance are designed and fabricated to operate at 2.45 GHz. A stepped-impedance resonator is applied between the antennas to suppress their mutual coupling. For the first time, the optimum values...
-
Generalized regression neural network and fitness dependent optimization: Application to energy harvesting of centralized TEG systems
PublicationThe thermoelectric generator (TEG) system has attracted extensive attention because of its applications in centralized solar heat utilization and recoverable heat energy. The operating efficiency of the TEG system is highly affected by operating conditions. In a series-parallel structure, due to diverse temperature differences, the TEG modules show non-linear performance. Due to the non-uniform temperature distribution (NUTD) condition,...
-
Food Classification from Images Using a Neural Network Based Approach with NVIDIA Volta and Pascal GPUs
PublicationIn the paper we investigate the problem of food classification from images, for the Food-101 dataset extended with 31 additional food classes from Polish cuisine. We adopted transfer learning and firstly measured training times for models such as MobileNet, MobileNetV2, ResNet50, ResNet50V2, ResNet101, ResNet101V2, InceptionV3, InceptionResNetV2, Xception, NasNetMobile and DenseNet, for systems with NVIDIA Tesla V100 (Volta) and...
-
Modelling of a medium-term dynamics in a shallow tidal sea, based on combined physical and neural network methods
Publication -
<title>Recurrent neural network application to image filtering: 2-D Kalman filtering approach</title>
Publication -
Designing of an effective structure of system for the maintenance of a technical object with the using information from an artificial neural network
Publication -
Safety assessment of ships in critical conditions using a knowledge-based system for design and neural network system
PublicationW pracy opisano wybrane elementy metody oceny bezpieczeństwa statków w stanie uszkodzonym, ukierunkowanej na ocenę osiągów statku i ocenę ryzyka. Metoda analizy osiągów i zachowania się statku w stanie uszkodzonym została wykorzystana do oceny charakterystyk hydromechanicznych statku uszkodzonego. Do oceny ryzyka wykorzystano elementy metodyki Formalnej Oceny Bezpieczeństwa. System ekspertowy został wykorzystany do analziy podziału...
-
Performance analysis of an rfid-based 3d indoor positioning system combining scene analysis and neural network methods
PublicationThe main purpose of this research is to improve localization accuracy of an active Radio Frequency Identification, RFID tag, in 3D indoor space. The paper presents a new RFID based 3D Indoor Positioning System which shows performance improvement. The proposed positioning system combines two methods: the Scene Analysis technique and Artificial Neural Network. The results of both simulation using Log-Distance Path Loss Model and...
-
DIAGNOSIS OF MALIGNANT MELANOMA BY NEURAL NETWORK ENSEMBLE-BASED SYSTEM UTILISING HAND-CRAFTED SKIN LESION FEATURES
PublicationMalignant melanomas are the most deadly type of skin cancer but detected early have high chances for successful treatment. In the last twenty years, the interest of automated melanoma recognition detection and classification dynamically increased partially because of public datasets appearing with dermatoscopic images of skin lesions. Automated computer-aided skin cancer detection in dermatoscopic images is a very challenging task...
-
Artificial neural network prophecy of ion exchange process for Cu (II) eradication from acid mine drainage
PublicationThe removal of heavy metal ions from wastewater was found to be significant when the cation exchange procedure was used effectively. The model of the cation exchange process was built using an artificial neural network (ANN). The acid mine drainage waste’s Cu(II) ion was removed using Indion 730 cation exchange resin. Experimental data from 252 cycles were recorded. In a column study, 252 experimental observations validated the...
-
Cost-Efficient Multi-Objective Design of Miniaturized Microwave Circuits Using Machine Learning and Artificial Neural Network
PublicationDesigning microwave components involves managing multiple objectives such as center frequencies, impedance matching, and size reduction for miniaturized structures. Traditional multi-objective optimization (MO) approaches heavily rely on computationally expensive population-based methods, especially when exe-cuted with full-wave electromagnetic (EM) analysis to guarantee reliability. This paper introduces a novel and cost-effective...