Search results for: physics-guided neural networks
-
Results of implementation of Feed Forward Neural Networks for modeling of heat transfer coefficient during flow condensation for low and high values of saturation temperature
Open Research DataThis database present results of implementation of Feed Forward Neural Networks for modeling of heat transfer coefficient during flow condensation for low and high values of saturation temperature. Databse contain one table and 7 figures.
-
Blood Pressure Estimation Based on Blood Flow, ECG and Respiratory Signals Using Recurrent Neural Networks
PublicationThe estimation of systolic and diastolic blood pressure using artificial neural network is considered in the paper. The blood pressure values are estimated using pulse arrival time, and additionally RR intervals of ECG signal together with respiration signal. A single layer recurrent neural network with hyperbolic tangent activation function was used. The average blood pressure estimation error for the data obtained from 21 subjects...
-
Using Convolutional Neural Networks for Corneal Arcus Detection Towards Familial Hypercholesterolemia Screening
PublicationFamilial hypercholesterolemia (FH) is a highly undiagnosed disease. Among FH patients, the onset of premature coronary artery disease is 13 times higher than in the general population. Early diagnosis and treatment is essential to prevent cardiovascular diseases and their complications, and to prolong life. One of the clinical criteria of FH is the occurrence of a corneal arcus (CA) among patients, especially those under 45 years...
-
DEEP CONVOLUTIONAL NEURAL NETWORKS AS A DECISION SUPPORT TOOL IN MEDICAL PROBLEMS – MALIGNANT MELANOMA CASE STUDY
PublicationThe paper presents utilization of one of the latest tool from the group of Machine learning techniques, namely Deep Convolutional Neural Networks (CNN), in process of decision making in selected medical problems. After the survey of the most successful applications of CNN in solving medical problems, the paper focuses on the very difficult problem of automatic analyses of the skin lesions. The authors propose the CNN structure...
-
Classification of objects in the LIDAR point clouds using Deep Neural Networks based on the PointNet model
PublicationThis work attempts to meet the challenges associated with the classification of LIDAR point clouds by means of deep learning. In addition to achieving high accuracy, the designed system should allow the classification of point clouds covering an area of several dozen square kilometers within a reasonable time interval. Therefore, it must be characterized by fast processing and efficient use of memory. Thus, the most popular approaches...
-
Gas Detection Using Resistive Gas Sensors And Radial Basis Function Neural Networks
PublicationWe present a use of Radial Basis Function (RBF) neural networks and Fluctuation Enhanced Sensing (FES) method in gas detection system utilizing a prototype resistive WO3 gas sensing layer with gold nanoparticles. We investigated accuracy of gas detection for three different preprocessing methods: no preprocessing, Principal Component Analysis (PCA) and wavelet transformation. Low frequency noise voltage observed in resistive gas...
-
Deep neural networks for human pose estimation from a very low resolution depth image
PublicationThe work presented in the paper is dedicated to determining and evaluating the most efficient neural network architecture applied as a multiple regression network localizing human body joints in 3D space based on a single low resolution depth image. The main challenge was to deal with a noisy and coarse representation of the human body, as observed by a depth sensor from a large distance, and to achieve high localization precision....
-
Assessment of Therapeutic Progress After Acquired Brain Injury Employing Electroencephalography and Autoencoder Neural Networks
PublicationA method developed for parametrization of EEG signals gathered from participants with acquired brain injuries is shown. Signals were recorded during therapeutic session consisting of a series of computer assisted exercises. Data acquisition was performed in a neurorehabilitation center located in Poland. The presented method may be used for comparing the performance of subjects with acquired brain injuries (ABI) who are involved...
-
Ship Resistance Prediction with Artificial Neural Networks
PublicationThe paper is dedicated to a new method of ship’s resistance prediction using Artificial Neural Network (ANN). In the initial stage selected ships parameters are prepared to be used as a training and validation sets. Next step is to verify several network structures and to determine parameters with the highest influence on the result resistance. Finally, other parameters expected to impact the resistance are proposed. The research utilizes...
-
Convolutional Neural Networks for C. Elegans Muscle Age Classification Using Only Self-Learned Features
PublicationNematodes Caenorhabditis elegans (C. elegans) have been used as model organisms in a wide variety of biological studies, especially those intended to obtain a better understanding of aging and age-associated diseases. This paper focuses on automating the analysis of C. elegans imagery to classify the muscle age of nematodes based on the known and well established IICBU dataset. Unlike many modern classification methods, the proposed...
-
Improving Accuracy of Contactless Respiratory Rate Estimation by Enhancing Thermal Sequences with Deep Neural Networks
PublicationEstimation of vital signs using image processing techniques have already been proved to have a potential for supporting remote medical diagnostics and replacing traditional measurements that usually require special hardware and electrodes placed on a body. In this paper, we further extend studies on contactless Respiratory Rate (RR) estimation from extremely low resolution thermal imagery by enhancing acquired sequences using Deep...
-
The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process
PublicationThis paper presents the application of artificial neural networks and decision trees for the prediction of odor properties of post-fermentation sludge from a biological-mechanical wastewater treatment plant. The input parameters were concentrations of popular compounds present in the sludge, such as toluene, p-xylene, and p-cresol, and process parameters including the concentration of volatile fatty acids, pH, and alkalinity in...
-
Application of neural networks for turbine rotor trajectory investigation.
PublicationW pracy przedstawiono rezultaty badań sieci neuronowych przewidujących trajektorię wirnika turbinowego uzyskanych ze stanowiska turbiny modelowej. Badania wykazały, iż sieci neuronowe wydają się być z powodzeniem zastosowane do przewidywania trajektorii ruchu wirnika turbiny. Najważniejszym zadaniem wydaje się poprawne określenie wektorów sygnałów wejściowych oraz wyjściowych jak również prawidłowe stworzenie sieci neuronowej....
-
Problems in toxicity analysis - application of fuzzy neural networks
PublicationPraca dotyczy zastosowania sztucznych sieci neuronowych do przygotowywania danych do szacowania toksyczności (wody powierzchniowe). Przygotowanie to polega na sztucznym zagęszczaniu zbioru danych, które następnie mogą być wykorzystane do szacowania/modelowania wartości toksyczności na ich podstawie.
-
Neural networks in the diagnostics of induction motor rotor cages.
PublicationW środowisku Lab VIEW została stworzona aplikacja służąca do pomiaru, prezentacji i zapisu przebiegów widma prądu stojana z uwzględnieniem potrzeb pomiarowych występujących podczas badania wirników silników indukcyjnych przy użyciu sieci neuronowych. Utworzona na bazie zbioru uczącego sieć Kohonena z powodzeniem rozwiązała stawiany przed nią problem klasyfikacji widm prądu stojana, a co za tym idzie również diagnozy stanu...
-
Applications of neural networks and perceptual masking to audio restoration
PublicationOmówiono zastosowania algorytmów uczących się w dziedzinie rekonstruowania nagrań fonicznych. Szczególną uwagę zwrócono na zastosowanie sztucznych sieci neuronowych do usuwania zakłócających impulsów. Ponadto opisano zastosowanie inteligentnego algorytmu decyzyjnego do sterowania maskowaniem perceptualnym w celu redukowania szumu.
-
Diagnosis of damages in family buildings using neural networks
PublicationThe article concerns a problem of damages in family buildings, which result from traffic-induced vibrations. These vibrations arise from various causes and their size is influenced by many factors. The most important is the type of a road, type and weight of vehicles that run on the road, type and condition of the road surface, the distance from the house to the source of vibrations and many others which should be taken into account....
-
Artificial Neural Networks in Microwave Components and Circuits Modeling
PublicationArtykuł dotyczy wykorzystania sztucznych sieci neuronowych (SNN) w projektowaniu i optymalizacji układów mikrofalowych.Zaprezentowano podstawowe zasady i założenia modelowania z użyciem SNN. Możliwości opisywanej metody opisano wykorzystując przykładowyprojekt anteny łatowej. Przedstawiono różne strategie modelowania układów, które wykorzystują możliwości opisywanej metody w połączeniu zwiedzą mikrofalową. Porównano również dokładność...
-
Sign Language Recognition Using Convolution Neural Networks
PublicationThe objective of this work was to provide an app that can automatically recognize hand gestures from the American Sign Language (ASL) on mobile devices. The app employs a model based on Convolutional Neural Network (CNN) for gesture classification. Various CNN architectures and optimization strategies suitable for devices with limited resources were examined. InceptionV3 and VGG-19 models exhibited negligibly higher accuracy than...
-
Architectural Modifications to Enhance Steganalysis with Convolutional Neural Networks
PublicationThis paper investigates the impact of various modifications introduced to current state-of-the-art Convolutional Neural Network (CNN) architectures specifically designed for the steganalysis of digital images. Usage of deep learning methods has consistently demonstrated improved results in this field over the past few years, primarily due to the development of newer architectures with higher classification accuracy compared to...
-
Artificial Neural Networks as an architectural design tool- generating new detail forms based on the Roman Corinthian order capital
PublicationThe following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital....
-
Predicting Performance of Lightweight Concrete with Granulated Expanded Glass and Ash Aggregate by Means of Using Artificial Neural Networks
PublicationLightweight concrete (LWC) is a group of cement composites of the defined physical, mechanical, and chemical performance. The methods of designing the composition of LWC with the assumed density and compressive strength are used most commonly. The purpose of using LWC is the reduction of the structure’s weight, as well as the reduction of thermal conductivity index. The highest possible strength, durability and low thermal conductivity...
-
GPU Power Capping for Energy-Performance Trade-Offs in Training of Deep Convolutional Neural Networks for Image Recognition
PublicationIn the paper we present performance-energy trade-off investigation of training Deep Convolutional Neural Networks for image recognition. Several representative and widely adopted network models, such as Alexnet, VGG-19, Inception V3, Inception V4, Resnet50 and Resnet152 were tested using systems with Nvidia Quadro RTX 6000 as well as Nvidia V100 GPUs. Using GPU power capping we found other than default configurations minimizing...
-
Automatic Breath Analysis System Using Convolutional Neural Networks
PublicationDiseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is common for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected as...
-
Automatic Breath Analysis System Using Convolutional Neural Networks
PublicationDiseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is not uncommon for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected...
-
Using neural networks to examine trending keywords in Inventory Control
Publication -
Neural networks based NARX models in nonlinear adaptive control
Publication -
Forecasting of currency exchange rates using artificial neural networks
PublicationW rozdziale tym autor przedstawił wyniki swoich badań nad wykorzystaniem sztucznych sieci neuronowych do prognozowania kursu walut (na przykładzie pary walutowej PLN-USD).Głównym celem badań było porównanie skuteczności przewidywania kursu złotówki w latach 1997 - 2005 przy pomocy różnych rodzajów sieci neuronowych.
-
Prediction of antimicrobial activity of imidazole derivatives by artificial neural networks
Publication -
Automatic singing quality recognition employing artificial neural networks
PublicationCelem artykułu jest udowodnienie możliwości automatycznej oceny jakości technicznej głosów śpiewaczych. Pokrótce zaprezentowano w nim stworzoną bazę danych głosów śpiewaczych oraz zaimplementowane parametry. Przy pomocy sztucznych sieci neuronowych zaprojektowano system decyzyjny, który oceniono w pięciostopniowej skali jakość techniczną głosu. Przy pomocy metod statystycznych udowodniono, że wyniki generowane przez ten system...
-
Application of Artificial Neural Networks in Investigations of Steam Turbine Cascades
PublicationZaprezentowano wyniki badań numerycznych zastosowania sieci neuronowych przy obliczeniach przepływów w palisadach turbin parowych. Na podstawie uzyskanych wyników wykazano, że sieci neuronowe mogą być używane do szacowania przestrzennego rozkładu parametrów przepływu, takich jak entalpia, entropia, ciśnienie czy prędkość czynnika w kanale przepływowym. Omówiono również zastosowania tego typu metod przy projektowaniu palisad, stopni...
-
Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks
PublicationIn this paper, the optical linear sensor, a representative of low-resolution sensors, was investigated in the multiclass recognition of near-field hand gestures. The recurrent neural network (RNN) with a gated recurrent unit (GRU) memory cell was utilized as a gestures classifier. A set of 27 gestures was collected from a group of volunteers. The 27 000 sequences obtained were divided into training, validation, and test subsets....
-
Application of neural networks for description of pressure distribution in slide bearing.
PublicationBadano rozkład ciśnienia hydrodynamicznego w łożysku ślizgowym dla wybranych wariantów łożyska. Wykazano, że zastosowanie sieci neuronowych umożliwia opis rozkładu ciśnienia hydrodynamicznego z uwzględnieniem zmian geometrycznych (bezwymiarowa długość - L) i mechanicznych (mimośrodowość względem H) łożyska.
-
Identification of slide bearing main parameters using neural networks.
PublicationWykazano, że sieci neuronowe jak najbardziej nadają się do identyfikacji głównych parametrów geometrycznych i ruchowych hydrodynamicznych łożysk ślizgowych.
-
Estimation the rhythmic salience of sound with association rules and neural networks
PublicationW referacie przedstawiono eksperymenty mające na celu automatyczne wyszukiwanie wartości rytmicznych we frazie muzycznej. W tym celu wykorzystano metody data mining i sztuczne sieci neuronowe.
-
IEEE Transactions on Neural Networks and Learning Systems
Journals -
Optical Memory and Neural Networks (Information Optics)
Journals -
The use of fast molecular descriptors and artificial neural networks approach in organochlorine compounds electron ionization mass spectra classification
PublicationDeveloping of theoretical tools can be very helpful for supporting new pollutant detection. Nowadays, a combination of mass spectrometry and chromatographic techniques are the most basic environmental monitoring methods. In this paper, two organochlorine compound mass spectra classification systems were proposed. The classification models were developed within the framework of artificial neural networks (ANNs) and fast 1D and...
-
Applying artificial neural networks for modelling ship speed and fuel consumption
PublicationThis paper deals with modelling ship speed and fuel consumption using artificial neural network (ANN) techniques. These tools allowed us to develop ANN models that can be used for predicting both the fuel consumption and the travel time to the destination for commanded outputs (the ship driveline shaft speed and the propeller pitch) selected by the ship operator. In these cases, due to variable environmental conditions, making...
-
Face with Mask Detection in Thermal Images Using Deep Neural Networks
PublicationAs the interest in facial detection grows, especially during a pandemic, solutions are sought that will be effective and bring more benefits. This is the case with the use of thermal imaging, which is resistant to environmental factors and makes it possible, for example, to determine the temperature based on the detected face, which brings new perspectives and opportunities to use such an approach for health control purposes. The...
-
Application of the neural networks for developing new parametrization of the Tersoff potential for carbon
PublicationPenta-graphene (PG) is a 2D carbon allotrope composed of a layer of pentagons having sp2- and sp3-bonded carbon atoms. A study carried out in 2018 has shown that the parameterization of the Tersoff potential proposed in 2005 by Ehrhart and Able (T05 potential) performs better than other potentials available for carbon, being able to reproduce structural and mechanical properties of the PG. In this work, we tried to improve the...
-
Extended Hopfield models of neural networks for combinatorial multiobjective optimization problems
Publication -
Optimization of a three-bed adsorption chiller by genetic algorithms and neural networks
Publication -
Neural Networks Based on Ultrafast Time-Delayed Effects in Exciton Polaritons
Publication -
Automatic singing voice recognition employing neural networks and rough sets
PublicationCelem prac opisanych w referacie jest automatyczne rozpoznawanie głosów śpiewaczych. Do tego celu utworzona została baza nagrań próbek śpiewu profesjonalnego i amatorskiego. Próbki poddane zostały parametryzacji parametrami zaproponowanymi przez autorów ściśle do tego celu. Sposób wyznaczenia parametrów i ich interpretacja fizyczna przedstawione są w referacie. Parametry wprowadzane są do systemów decyzyjnych, klasyfikatorów opartych...
-
Use of Neural Networks in Diagnostics of Rolling-Element Bearing of the Induction Motor
Publication -
Analysis of electrical patterns activity in artificial multi-stable neural networks
Publication -
Artificial Neural Networks for Prediction of Antibacterial Activity in Series of Imidazole Derivatives
Publication -
Neural Networks in the Diagnostics Process of Low-Power Solar Plant Devices
Publication -
Comparative study of neural networks used in modeling and control of dynamic systems
PublicationIn this paper, a diagonal recurrent neural network that contains two recurrent weights in the hidden layer is proposed for the designing of a synchronous generator control system. To demonstrate the superiority of the proposed neural network, a comparative study of performances, with two other neural network (1_DRNN) and the proposed second-order diagonal recurrent neural network (2_DRNN). Moreover, to confirm the superiority...