displaying 1000 best results Help
Search results for: REDUCED GRAPHENE OXIDE
-
Comprehensive study on graphene hydrogels and aerogels synthesis and their ability of gold nanoparticles adsorption
PublicationGraphene hydrogels were prepared by ascorbic acid-assisted gelation of graphene oxide (GO) aqueous suspensions both in acidic and basic conditions. Different mass ratio of ascorbic acid (AA) to GO was used (namely 20:1 and 10:1). In order to eliminate the influence of AA on the final structure of hydrogels, samples without AA were prepared by a hydrothermal gelation of GO in an autoclave. An in-depth structural characterization...
-
Nitrogen dioxide gas-sensing detection with GO modified CuO thin films
PublicationGas sensors have been continuously developed over the last few decades for several applications including air quality monitoring, automotive industry and recently for medical use. Gas sensors are usually based on metal oxides (MOXs), such as SnO2, TiO2, ZnO, WO3, CuO. Recently, new materials such as graphene oxide and heterostructures of graphene oxide and metal oxides are utilized for gassensing applications.
-
Synergistic effects of nitrogen-doped carbon and praseodymium oxide in electrochemical water splitting
PublicationHybrid materials featuring perovskite-type metal oxide in conjunction with heteroatom-doped graphene hold immense promise as alternatives to costly noble metal catalysts for electrochemical water splitting, facilitating the generation of environmentally friendly hydrogen. In this study, perovskite-type oxide containing praseodymium, barium, strontium, cobalt, and iron atoms dispersed in a carbon matrix as a catalyst is synthesized...
-
Modification of TiO2 nanotubes by graphene–strontium and cobalt molybdate perovskite for efficient hydrogen evolution reaction in acidic medium
PublicationHerein, we demonstrate that modification of TiO2 nanotubes with graphene–strontium and cobalt molybdate perovskite can turn them into active electrocatalysts for hydrogen evolution reaction (HER). For this purpose, a simple method of hydrothermal synthesis of perovskites was developed directly on the TiO2 nanotubes substrate. Moreover, the obtained hybrids were also decorated with graphene oxide (GO) during one-step hydrothermal...
-
Obrony prac doktorskich na Wydziale Chemicznym
EventsDn. 26.04.2022 r. o godz. 8.30 w Audytorium 1.4 Wydziału Chemicznego PG (budynek nr 5) odbędzie się w trybie hybrydowym obrona pracy doktorskiej mgr inż. Karoliny Grajewskiej.
-
Ammonium and potassium vanadates: synthesis, physicochemical characterization, and applications
PublicationThis doctoral thesis is devoted to the synthesis and investigation of ammonium/potassium vanadates, which constitute an interesting group of materials due to their potential applications in electrochemical devices and photocatalysis. The scope of the conducted experimental work included the synthesis of ammonium/potassium vanadates, their physicochemical characterization using various methods (spectroscopy, microscopy, thermal...
-
Piotr Jasiński prof. dr hab. inż.
PeoplePiotr Jasinski obtained MSc in electronics in 1992 from the Gdansk University of Technology (GUT), Poland. Working at GUT, he received PhD in 2000 and DSc in 2009. Between 2001 and 2004 Post Doctoral Fellow at Missouri University of Science and Technology, while between 2008 and 2010 an Assistant Research Professor. Currently is an Associate Professor at Gdansk University of Technology working in the field of electronics, biomedical...
-
Near-Infrared III Nanophosphorswith Cr3+Ni2+ Energy Transfer for Bioimaging
Open Research DataIn the biomedical field, the use of fluorescence imaging in the second near-infrared (NIR-II) region is growing rapidly because it imparts the advantages of reduced autofluorescence and low photon scattering. The advantage of reduced scattering is that it increases penetration depth in vivo and improves imaging clarity. Herein, this work uses mesoporous...
-
Badania stabilności chemicznej kompozytowego elektrolitu 3-YSZ-Al2O3 w stosunku do materiałów elektrodowych do zastosowania w średniotemperaturowych ogniwach paliwowych
PublicationJednym z podstawowych wymogów stawianych mate- riałom na elektrolity do średniotemperaturowych ogniw paliwowych IT-SOFC (ang. intermediate-temperature solid oxide fuel cells) jest ich kompatybilność chemiczna z elektrodami w temperaturach zarówno eksploatacji, jak i wytwarzania ogniw. W celu sprawdzenia, czy badany w pracy kompozytowy elektrolit o osnowie z częściowo stabilizowanego ditlenku cyrkonu i z wtrąceniami tlenku glinu...
-
Understanding the capacitance of thin composite films based on conducting polymer and carbon nanostructures in aqueous electrolytes
PublicationIn this work electrochemical performance of thin composite films consisted of poly(3,4-ethylenedioxythiophene) (PEDOT), graphene oxide (GOx) and oxidized multiwalled carbon nanotubes (oxMWCNTs) is investigated in various sulphates (Li2SO4, Na2SO4, K2SO4, MgSO4) and acidic (H2SO4) electrolytes. Capacitance values, rate capability and cycling stability achieved for the composite layers are correlated with the electrolytes’ properties...
-
Electrically Conductive Carbon‐based (Bio)‐nanomaterials for Cardiac Tissue Engineering
PublicationA proper self-regenerating capability is lacking in human cardiac tissue which along with the alarming rate of deaths associated with cardiovascular disorders makes tissue engineering critical. Novel approaches are now being investigated in order to speedily overcome the challenges in this path. Tissue engineering has been revolutionized by the advent of nanomaterials, and later by the application of carbon-based nanomaterials...
-
A critical review on electrospun membranes containing 2D materials for seawater desalination
PublicationElectrospun nanofibers are a cutting-edge class of membranes which have been applied in several molecular separations. These membranes can be well designed and tailored due to the versatility of the electrospinning process. Eminently, electrospun membranes, once implemented in membrane processes, are an alternative in removing salts and some other minerals from water, so-called desalination, for producing drinking water. Such membranes...
-
Recent Advances in Polymer Nanocomposites: Unveiling the Frontier of Shape Memory and Self-Healing Properties—A Comprehensive Review
PublicationShape memory and self-healing polymer nanocomposites have attracted considerable attention due to their modifiable properties and promising applications. The incorporation of nanomaterials (polypyrrole, carboxyl methyl cellulose, carbon nanotubes, titania nanotubes, graphene, graphene oxide, mesoporous silica) into these polymers has significantly enhanced their performance, opening up new avenues for diverse applications. The...
-
New Trends in Sample Preparation Techniques for the Analysis of the Residues of Pharmaceuticals in Environmental Samples
PublicationPharmaceutical residues in the environment is a field of special interest due to the adverse effects to either human health or aquatic and soil environment. Pharmaceuticals have been already detected in underground, surface and wastewaters, soils, manure and sediments. The growing awareness of environmental pollution arising from human activity forces the need for their comprehensive determination. Environmental samples are complex...
-
Chitosan-based nanomaterials for removal of water pollutants
PublicationThe rise of micropollutants presents a significant threat to both the environment and human well-being, requiring effective strategies for their mitigation. Chitin serves as the precursor for chitosan, composed of two monomers featuring acetamido and amino groups. Chitosan possesses several noteworthy attributes, including its ability to bind water and fat, humidity content, solubility, consistent molecular weight, and various...
-
Polymer and graphitic carbon nitride based nanohybrids for the photocatalytic degradation of pharmaceuticals in wastewater treatment – A review
PublicationPharmaceuticals, including antibiotics and anti-inflammatory drugs, have been frequently detected in water reservoirs, in concentrations ranging from ng/L to μg/L, owing to their wide use in treatment of human and animal disease. Their uncontrolled use results in their increased release into the environment which is harmful for humans, animals, aquatic life and aquatic system. To remove these pollutants from water bodies, various...
-
GRAPHENE IN GAS CHEMIRESISTORS
PublicationGraphene has a range of unique physical properties which could be exploited in gas sensing. Every atom of graphene may be considered as a surface atom, able to interact even with single molecule of the target gas or vapour species resulting in the ultrasensitive sensor response. In this paper the potential of graphene as a nanomaterial for fabricating chemiresistors was described. Recent development in graphene sensors was considered...
-
Graphene Reinforced Phenolic Foams
PublicationPhenolic foams (PF) belong to the polymeric materials, which are very attractive from the point of many possible applications such as insulation or fire protection materials. This chapter attempts to explain the influence of graphene and graphene derivatives on the phenolic foams. This work briefly presents different graphene nanoparticles introduced to the phenolic foams matrix, in terms of impact on the thermal, mechanical, and...
-
Investigating Layered Topological Magnetic Materials as Efficient Electrocatalysts for the Hydrogen Evolution Reaction under High Current Densities
PublicationDespite considerable progress, high-performing durable catalysts operating under large current densities (i.e., >1000 mA/cm2) are still lacking. To discover platinum group metal-free (PGMfree) electrocatalysts for sustainable energy, our research involves investigating layered topological magnetic materials (semiconducting ferromagnets) as highly efficient electrocatalysts for the hydrogen evolution reaction under high current...
-
Graphene Production and Biomedical Applications: A Review
PublicationGraphene is a two-dimensional nanomaterial composed of carbon atoms with sp2 hybrid orbitals. Both graphene and graphene-based composite have gained broad interest among researchers because of their outstanding physiochemical, mechanical, and biological properties. Graphene production techniques are divided into top-down and bottom-up synthesis methods, of which chemical vapor deposition (CVD) is the most popular. The biomedical...
-
Procognitive activity of nitric oxide inhibitors and donors in animal models
PublicationNitric oxide is a small gaseous molecule that plays important roles in the majority of biological functions. Impairments of NO-related pathways contribute to the majority of neurological disorders, such as Alzheimer’s disease (AD), and mental disorders, such as schizophrenia. Cognitive decline is one of the most serious impairments accompanying both AD and schizophrenia. In the present study, the activities of NO donors, slow (spermine...
-
Facile synthesis and characterization of graphene and N-doped graphene by CVD method from liquid precursors for promising electrode materials
PublicationIn this study, high-quality and few-layered graphene was synthesized using the chemical vapor deposition (CVD) method from liquid sources. Two different liquid carbon sources, pyridine, and benzene, were used and deposited on nickel foam under heat conditions using a bubbler in a quartz tube. X-ray diffraction (XRD) and Raman analysis confirmed the crystalline properties of graphene and N-doped graphene, demonstrating the high...
-
Review of the Application of Graphene-Based Coatings as Anticorrosion Layers
PublicationDue to the excellent properties of graphene, including flexibility that allows it to adjust to the curvature of the substrate surface, chemical inertness, and impermeability, graphene is used as an anticorrosion layer. In this review, we present the current state-of-the-art in the application of graphene in the field of protective coatings. This review provides detailed discussions about the protective properties of graphene coatings...
-
RECENT ADVANCES IN GRAPHENE APPLICATION FOR ELECTRONIC SENSING
PublicationThe great interest in graphene is caused by its potential for constructing various sensors exhibiting excellent parameters. The high carrier mobility and the unique band structure of graphene makes it promising especially in the field-effect transistors (GFET) applications. In this article, recent advances of the selected graphene-based sensor applications were presented and the possible directions for further investigations were...
-
HYBRID REDUCED MODEL OF ROTOR
PublicationIn the paper, the authors describe the method of model reduction of a rotor system. The proposed approach enables to obtain a low order model including e.g. nonproportional damping or the gyroscopic effect. This method is illustrated using the example of a rotor system. First, a model of the system was built without gyroscopic and damping effects by using the rigid finite element method. Next, this model was reduced. Finally, two...
-
Automated Reduced Model Order Selection
PublicationThis letter proposes to automate generation of reduced-order models used for accelerated -parameter computation by applying a posteriori model error estimators. So far,a posteriori error estimators were used in Reduced Basis Method (RBM) and Proper Orthogonal Decomposition (POD) to select frequency points at which basis vectors are generated. This letter shows how a posteriori error estimators can be applied to automatically select...
-
GRAPHENE-BASED SUPERCAPACITORS APPLICATION FOR ENERGY STORAGE
PublicationRecent advances in graphene-based supercapacitor technology for energy storage application were summarized. The comparison of different types of electrode materials in such supercapacitors was performed. The supercapacitors with graphene-based electrodes exhibit outstanding performance: high charge-discharge rate, high power density, high energy density and long cycle-life, what makes them suitable for various applications, e.g....
-
3D porous graphene-based structures- synthesis and applications
PublicationPorous carbon-based materials are of the great industrial and academic interest due to their high surface area, low density, good electrical conductivity, chemical inertness and low cost of fabrication. Up to now, the main approach to obtain porous carbon structures has involved the pyrolysis of carbonaceous natural or synthetic precursors. After the isolation of graphene, the interest in 3D porous graphene-based structures (called...
-
Silica-templated three-dimensional graphene xerogels
PublicationMost porous carbons require the uniform pore size distribution therefore many approaches have been applied to template the carbon scaffolds and among them the use of silica particles is the easiest and the most effective. After discovering of graphene, the whole family of new carbon nanomaterials arose and one of the promising materials is graphene xerogel (GX) with a three-dimensional, highly porous structure. This monograph reviews...
-
Enhanced supercapacitor materials from pyrolyzed algae and graphene composites
PublicationThis study focuses on the synthesis and characterization of supercapacitor materials derived from pyrolyzed natural compounds. Four compounds were investigated: methylcellulose with lysine (ML), methylcellulose with lysine-graphene composite (MLG), algae (A), and algae-graphene composite (AG). The pyrolysis process was utilized to convert these natural compounds into carbon-based materials suitable for supercapacitor applications....
-
Recent and Emerging Applications of Graphene-based metamaterials in Electromagnetics
PublicationSurface Plasmon Polaritons (SPPs) operating in mid-infrared up to terahertz (THz) frequencies have been traditionally manufactured on expensive metals such as gold, silver, etc. However, such metals have poor surface confinement that limits the optical applications of SPPs. The invention of graphene is a breakthrough in plasmon-based devices in terms of design, fabrication and applications, thanks to its plasmonic wave distribution,...
-
A Note on Reduced Strain Gradient Elasticity
PublicationWe discuss the particular class of strain-gradient elastic material models which we called the reduced or degenerated strain-gradient elasticity. For this class the strain energy density depends on functions which have different differential properties in different spatial directions. As an example of such media we consider the continual models of pantographic beam lattices and smectic and columnar liquid crystals.
-
New approach for the synthesis of Ag3PO4-graphene photocatalysts
PublicationA facile and effective plasma sputtering method for the preparation of a visible light active photocatalyst - rhombic dodecahedral silver phosphate Ag3PO4 covered with nanographene (Ag3PO4-GR) with improved stability has been developed. Proposed method allows for the usage of readily available materials for nanographene sputtering and for easy scaling-up. The stability improvement, confirmed by visible light-induced phenol degradation...
-
Reduced order model of 2d system
PublicationA new method of modelling is developed for static and dynamic analysis of two-dimensional elastic bodies. In the analysis, an elastic body is divided into strips. For each one-dimensional strip the reduced modal model is build up. The modal model contains appropriate number of inputs and outputs to connect lumped interaction that occur between strips. Proposed method of modelling enables to obtain more accurate and more simple...
-
Graphene field-effect transistor application for flow sensing
PublicationMicroflow sensors offer great potential for applications in microfluidics and lab-on-a-chip systems. However, thermal-based sensors, which are commonly used in modern flow sensing technology, are mainly made of materials with positive temperature coefficients (PTC) and suffer from a self-heating effect and slow response time. Therefore, the design of novel devices and careful selection of materials are required to improve the overall...
-
The effects of gas exposure on the graphene/AlGaN/GaN heterostructure under UV irradiation
PublicationThis work demonstrates a graphene/AlGaN/GaN sensing device with two-dimensional electron gas (2DEG) toward nitrogen dioxide (NO2), tetrahydrofuran, and acetone detection under UV light irradiation. We propose combining measurements of the DC characteristics with a fluctuation-enhanced sensing method to provide insight into the gas detection mechanisms in the synergistic structure of highly stable GaN and gas-sensitive graphene....
-
Hybrid Reduced Model of Continuous System
PublicationThe paper introduces an alternative method of modelling and modal reduction of continuous systems. Presented method is a hybrid one. It combines the advantages of modal decomposition method and the rigid finite element method. In the proposed method continuous structure is divided into one-dimensional continuous elements. For each 1D element modal decomposition and reduction is applied. Interactions between substructures are...
-
A comparison of geometric analogues of holographic reduced representations, original holographic reduced representations and binary spatter codes
PublicationGeometric Analogues of Holographic Reduced Representations (GA HRR) employ role-filler binding based on geometric products. Atomic objects are real-valued vectors in n-dimensional Euclidean space and complex statements belong to a hierarchy of multivectors. The paper reports a battery of tests aimed at comparison of GA HRR with Holographic Reduced Representation (HRR) and Binary Spatter Codes (BSC). Firstly, we perform a test of...
-
Elastic polyurethane foams containing graphene nanoplatelets
PublicationElastic polyurethane foams were produced from two-component polyurethane systems (SPECFLEX NE 113 izocyjanian/NR 816 poliol system—SPC and Elastic MBMarket company system POLYOL ET MB 500/ISO ET MB 800—ET) by using a one-step method. The foams were a graphene nanoplatelets (GNP) in the amount ranging from 1 to 2 wt.%. The effect of the nanofiller on polyurethane matrix was determined by analyzing the chemical structure, static...
-
Journal of Non-Oxide Glasses
Journals -
Molecular Dynamics simulations of thermal conductivity of penta-graphene
PublicationThe thermal conductivity of penta-graphene (PG), a new two dimensional carbon allotrope and its dependence on temperature, strain, and direction are studied in this paper. The thermal conductivity of PG is investigated using a non-equilibrium molecular dynamics simulation (NEMD) with the Two Region Method by applying the optimized Tersoff interatomic potential. Our study shows that the thermal conductivity of PG (determined for...
-
Novel method for metal-oxide glass composite fabrication for use in thermoelectric devices
PublicationA novel method for thermoelectric materials fabrication using a reduction of oxide precursors in hydrogen was reported. On the example of Bi-Sb, Bi-Sb-Te and Te-Ag-Ge-Sb compounds it was shown that this simple and easy method is suitable for fabrication of two-, three- and even multicomponent thermoelectric materials. It allows controlling a composition, microstructure and even type a of electrical charge carriers. As a result...
-
Chemical modifications of graphene and their influence on properties of polyurethane composites: a review
PublicationPolyurethane composites are materials of great interest nowadays due to their wide range of available forms and applications in industry. Controlling and achieving unique properties via matrix modifications and addition of various specific nanofillers seems be one of the key elements to success. The purpose of this work is to briefly present some examples of graphene nanoderivatives, their syntheses, properties and influence on...
-
Tailoring Graphene to Achieve Negative Poisson's Ratio Properties
PublicationGraphene can be made auxetic through the introduction of vacancy defects. This results in the thinnest negative Poisson's ratio material at ambient conditions known so far, an effect achieved via a nanoscale de-wrinkling mechanism that mimics the behavior at the macroscale exhibited by a crumpled sheet of paper when stretched.
-
Probability distribution of flicker noise in AuNPdecorated graphene–Si Schottky barrier diode
PublicationWe present results of the probability distribution analysis of flicker noise generated in Au nanoparticle (AuNP) decorated graphene–Si Schottky barrier diodes with and without yellow light illumination (592 nm), close to the localized surface plasmon resonance in the AuNPs (586 nm). The AuNPs occupy imperfections in the single-layer graphene and reduce the flicker noise intensity generated in the graphene layer. The estimated probability...
-
Imaging of graphene surface by means of tapping mode AFM
Open Research DataGraphene [1] is a material consisting of carbon planes with a hexagonal structure. One of the facts of interest from a purely scientific point of view is the very high mobility of electrons in the described material, allowing the study of relativistic effects inside a solid sample. Other features, such as bactericidal activity, make graphene an interesting...
-
Geometric analogue of holographic reduced representation
PublicationHolographic reduced representations (HRRs) are distributed representations of cognitive structuresbased on superpositions of convolution-bound n-tuples. Restricting HRRs to n-tuples consisting of 1,one reinterprets the variable binding as a representation of the additive group of binary n-tupleswith addition modulo 2. Since convolutions are not defined for vectors, the HRRs cannot be directlyassociated with geometric structures....
-
Characterization of PVDF/Graphene Nanocomposite Membranes for Water Desalination with Enhanced Antifungal Activity
PublicationSeawater desalination is a worldwide concern for the sustainable production of drinking water. In this regard, membrane distillation (MD) has shown the potential for effective brine treatment. However, the lack of appropriate MD membranes limits its industrial expansion since they experience fouling and wetting issues. Therefore, hydrophobic membranes are promising candidates to successfully deal with such phenomena that are typical...
-
Pulsed UV-irradiated Graphene Sensors for Ethanol Detection at Room Temperature
PublicationA graphene-based gas sensor fabricated in a FET (GFET) configuration and its sensitivity towards ethanol and methane is reported. Detection of ethanol at the level of 100 ppm was observed under pulsed UV irradiation and after cleaning by UV light in the N2 ambient. Reduction of the frequency of UV irradiation pulses resulted in increased changes in sensor resistance in the presence of ethanol. Improved sensing behavior was ascribed...
-
Properties of Composite Oxide Layers on The Ti13Nb13Zr Alloy
PublicationThe development of composite oxide layers on the Ti13Nb13Zr alloy, their structure and properties have been demonstrated. Two subsequent methods were applied to prepare the composite layers. During the first stage gas oxidation produced a solid oxide layer, and subsequently oxide nanotubes were produced by using an electrochemical method. Scanning electron microscopy (SEM), chemical analysis, energy dispersive X-ray spectroscopy...