Search results for: semantic segmentation, noisy annotations, loss masking, deep neural networks
-
Deep Learning-Based Cellular Nuclei Segmentation Using Transformer Model
PublicationAccurate segmentation of cellular nuclei is imperative for various biological and medical applications, such as cancer diagnosis and drug discovery. Histopathology, a discipline employing microscopic examination of bodily tissues, serves as a cornerstone for cancer diagnosis. Nonetheless, the conventional histopathological diagnosis process is frequently marred by time constraints and potential inaccuracies. Consequently, there...
-
Fast Fading Influence on the Deep Learning-Based LOS and NLOS Identificationin Wireless Body Area Networks
PublicationIn the article, the fast fading influence on the proposed DL (Deep Learning) approach for LOS (Line-of-Sight) and NLOS (Non-Line-of-Sight) conditions identification in Wireless Body Area Networks is investigated. The research was conducted on the basis of the off-body communication measurements using the developed mobile measurement stand, in an indoor environment for both static and dynamic scenarios. The measurements involved...
-
Gas Detection Using Resistive Gas Sensors And Radial Basis Function Neural Networks
PublicationWe present a use of Radial Basis Function (RBF) neural networks and Fluctuation Enhanced Sensing (FES) method in gas detection system utilizing a prototype resistive WO3 gas sensing layer with gold nanoparticles. We investigated accuracy of gas detection for three different preprocessing methods: no preprocessing, Principal Component Analysis (PCA) and wavelet transformation. Low frequency noise voltage observed in resistive gas...
-
Assessment of Therapeutic Progress After Acquired Brain Injury Employing Electroencephalography and Autoencoder Neural Networks
PublicationA method developed for parametrization of EEG signals gathered from participants with acquired brain injuries is shown. Signals were recorded during therapeutic session consisting of a series of computer assisted exercises. Data acquisition was performed in a neurorehabilitation center located in Poland. The presented method may be used for comparing the performance of subjects with acquired brain injuries (ABI) who are involved...
-
Ship Resistance Prediction with Artificial Neural Networks
PublicationThe paper is dedicated to a new method of ship’s resistance prediction using Artificial Neural Network (ANN). In the initial stage selected ships parameters are prepared to be used as a training and validation sets. Next step is to verify several network structures and to determine parameters with the highest influence on the result resistance. Finally, other parameters expected to impact the resistance are proposed. The research utilizes...
-
Comparison of Selected Neural Network Models Used for Automatic Liver Tumor Segmentation
PublicationAutomatic and accurate segmentation of liver tumors is crucial for the diagnosis and treatment of hepatocellular carcinoma or metastases. However, the task remains challenging due to imprecise boundaries and significant variations in the shape, size, and location of tumors. The present study focuses on tumor segmentation as a more critical aspect from a medical perspective, compared to liver parenchyma segmentation, which is the...
-
Influence of User Mobility and Antenna Placement on System Loss in B2B Networks
PublicationIn this paper, the influence of user mobility and on-body antenna placement on system loss in body-to-body communications in indoor and outdoor environments and different mobility scenarios is studied, based on system loss measurements at 2.45 GHz. The novelty of this work lies on the proposal of a classification model to characterise the effect of user mobility and path visibility on system loss, allowing to identify the best...
-
The Use of Artificial Neural Networks and Decision Trees to Predict the Degree of Odor Nuisance of Post-Digestion Sludge in the Sewage Treatment Plant Process
PublicationThis paper presents the application of artificial neural networks and decision trees for the prediction of odor properties of post-fermentation sludge from a biological-mechanical wastewater treatment plant. The input parameters were concentrations of popular compounds present in the sludge, such as toluene, p-xylene, and p-cresol, and process parameters including the concentration of volatile fatty acids, pH, and alkalinity in...
-
Application of neural networks for turbine rotor trajectory investigation.
PublicationW pracy przedstawiono rezultaty badań sieci neuronowych przewidujących trajektorię wirnika turbinowego uzyskanych ze stanowiska turbiny modelowej. Badania wykazały, iż sieci neuronowe wydają się być z powodzeniem zastosowane do przewidywania trajektorii ruchu wirnika turbiny. Najważniejszym zadaniem wydaje się poprawne określenie wektorów sygnałów wejściowych oraz wyjściowych jak również prawidłowe stworzenie sieci neuronowej....
-
Problems in toxicity analysis - application of fuzzy neural networks
PublicationPraca dotyczy zastosowania sztucznych sieci neuronowych do przygotowywania danych do szacowania toksyczności (wody powierzchniowe). Przygotowanie to polega na sztucznym zagęszczaniu zbioru danych, które następnie mogą być wykorzystane do szacowania/modelowania wartości toksyczności na ich podstawie.
-
Neural networks in the diagnostics of induction motor rotor cages.
PublicationW środowisku Lab VIEW została stworzona aplikacja służąca do pomiaru, prezentacji i zapisu przebiegów widma prądu stojana z uwzględnieniem potrzeb pomiarowych występujących podczas badania wirników silników indukcyjnych przy użyciu sieci neuronowych. Utworzona na bazie zbioru uczącego sieć Kohonena z powodzeniem rozwiązała stawiany przed nią problem klasyfikacji widm prądu stojana, a co za tym idzie również diagnozy stanu...
-
Diagnosis of damages in family buildings using neural networks
PublicationThe article concerns a problem of damages in family buildings, which result from traffic-induced vibrations. These vibrations arise from various causes and their size is influenced by many factors. The most important is the type of a road, type and weight of vehicles that run on the road, type and condition of the road surface, the distance from the house to the source of vibrations and many others which should be taken into account....
-
Artificial Neural Networks in Microwave Components and Circuits Modeling
PublicationArtykuł dotyczy wykorzystania sztucznych sieci neuronowych (SNN) w projektowaniu i optymalizacji układów mikrofalowych.Zaprezentowano podstawowe zasady i założenia modelowania z użyciem SNN. Możliwości opisywanej metody opisano wykorzystując przykładowyprojekt anteny łatowej. Przedstawiono różne strategie modelowania układów, które wykorzystują możliwości opisywanej metody w połączeniu zwiedzą mikrofalową. Porównano również dokładność...
-
Sign Language Recognition Using Convolution Neural Networks
PublicationThe objective of this work was to provide an app that can automatically recognize hand gestures from the American Sign Language (ASL) on mobile devices. The app employs a model based on Convolutional Neural Network (CNN) for gesture classification. Various CNN architectures and optimization strategies suitable for devices with limited resources were examined. InceptionV3 and VGG-19 models exhibited negligibly higher accuracy than...
-
DentalSegmentator: Robust open source deep learning-based CT and CBCT image segmentation
Publication -
Artificial Neural Networks as an architectural design tool- generating new detail forms based on the Roman Corinthian order capital
PublicationThe following paper presents the results of the research in the field of the machine learning, investigating the scope of application of the artificial neural networks algorithms as a tool in architectural design. The computational experiment was held using the backward propagation of errors method of training the artificial neural network, which was trained based on the geometry of the details of the Roman Corinthian order capital....
-
Age Prediction from Low Resolution, Dual-Energy X-ray Images Using Convolutional Neural Networks
PublicationAge prediction from X-rays is an interesting research topic important for clinical applications such as biological maturity assessment. It is also useful in many other practical applications, including sports or forensic investigations for age verification purposes. Research on these issues is usually carried out using high-resolution X-ray scans of parts of the body, such as images of the hands or images of the chest. In this...
-
Predicting Performance of Lightweight Concrete with Granulated Expanded Glass and Ash Aggregate by Means of Using Artificial Neural Networks
PublicationLightweight concrete (LWC) is a group of cement composites of the defined physical, mechanical, and chemical performance. The methods of designing the composition of LWC with the assumed density and compressive strength are used most commonly. The purpose of using LWC is the reduction of the structure’s weight, as well as the reduction of thermal conductivity index. The highest possible strength, durability and low thermal conductivity...
-
Deep learning based segmentation using full wavefield processing for delamination identification: A comparative study
Publication -
Automatic singing quality recognition employing artificial neural networks
PublicationCelem artykułu jest udowodnienie możliwości automatycznej oceny jakości technicznej głosów śpiewaczych. Pokrótce zaprezentowano w nim stworzoną bazę danych głosów śpiewaczych oraz zaimplementowane parametry. Przy pomocy sztucznych sieci neuronowych zaprojektowano system decyzyjny, który oceniono w pięciostopniowej skali jakość techniczną głosu. Przy pomocy metod statystycznych udowodniono, że wyniki generowane przez ten system...
-
Application of Artificial Neural Networks in Investigations of Steam Turbine Cascades
PublicationZaprezentowano wyniki badań numerycznych zastosowania sieci neuronowych przy obliczeniach przepływów w palisadach turbin parowych. Na podstawie uzyskanych wyników wykazano, że sieci neuronowe mogą być używane do szacowania przestrzennego rozkładu parametrów przepływu, takich jak entalpia, entropia, ciśnienie czy prędkość czynnika w kanale przepływowym. Omówiono również zastosowania tego typu metod przy projektowaniu palisad, stopni...
-
Forecasting of currency exchange rates using artificial neural networks
PublicationW rozdziale tym autor przedstawił wyniki swoich badań nad wykorzystaniem sztucznych sieci neuronowych do prognozowania kursu walut (na przykładzie pary walutowej PLN-USD).Głównym celem badań było porównanie skuteczności przewidywania kursu złotówki w latach 1997 - 2005 przy pomocy różnych rodzajów sieci neuronowych.
-
Using neural networks to examine trending keywords in Inventory Control
Publication -
Prediction of antimicrobial activity of imidazole derivatives by artificial neural networks
Publication -
Neural networks based NARX models in nonlinear adaptive control
Publication -
Application of neural networks for description of pressure distribution in slide bearing.
PublicationBadano rozkład ciśnienia hydrodynamicznego w łożysku ślizgowym dla wybranych wariantów łożyska. Wykazano, że zastosowanie sieci neuronowych umożliwia opis rozkładu ciśnienia hydrodynamicznego z uwzględnieniem zmian geometrycznych (bezwymiarowa długość - L) i mechanicznych (mimośrodowość względem H) łożyska.
-
Identification of slide bearing main parameters using neural networks.
PublicationWykazano, że sieci neuronowe jak najbardziej nadają się do identyfikacji głównych parametrów geometrycznych i ruchowych hydrodynamicznych łożysk ślizgowych.
-
Estimation the rhythmic salience of sound with association rules and neural networks
PublicationW referacie przedstawiono eksperymenty mające na celu automatyczne wyszukiwanie wartości rytmicznych we frazie muzycznej. W tym celu wykorzystano metody data mining i sztuczne sieci neuronowe.
-
Automatic Breath Analysis System Using Convolutional Neural Networks
PublicationDiseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is not uncommon for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected...
-
Gesture Recognition With the Linear Optical Sensor and Recurrent Neural Networks
PublicationIn this paper, the optical linear sensor, a representative of low-resolution sensors, was investigated in the multiclass recognition of near-field hand gestures. The recurrent neural network (RNN) with a gated recurrent unit (GRU) memory cell was utilized as a gestures classifier. A set of 27 gestures was collected from a group of volunteers. The 27 000 sequences obtained were divided into training, validation, and test subsets....
-
Automatic Breath Analysis System Using Convolutional Neural Networks
PublicationDiseases related to the human respiratory system have always been a burden for the entire society. The situation has become particularly difficult now after the outbreak of the COVID-19 pandemic. Even now, however, it is common for people to consult their doctor too late, after the disease has developed. To protect patients from severe disease, it is recommended that any symptoms disturbing the respiratory system be detected as...
-
A Comprehensive Analysis of Deep Neural-Based Cerebral Microbleeds Detection System
PublicationMachine learning-based systems are gaining interest in the field of medicine, mostly in medical imaging and diagnosis. In this paper, we address the problem of automatic cerebral microbleeds (CMB) detection in magnetic resonance images. It is challenging due to difficulty in distinguishing a true CMB from its mimics, however, if successfully solved it would streamline the radiologists work. To deal with this complex three-dimensional...
-
IEEE Transactions on Neural Networks and Learning Systems
Journals -
Optical Memory and Neural Networks (Information Optics)
Journals -
Performance Evaluation of GAM in Off-Body Path Loss Modelling for Body Area Networks
PublicationThis paper addresses the performance evaluation of an off-body path loss model, based on measurements at 2.45 GHz, which has been developed with the use of the Generalised Additive Model, allowing to model a non-linear dependence on different predictor variables. The model formulates path loss as a function of distance, antennas’ heights, antenna orientation angle and polarisation, results showing that performance is very sensitive...
-
The use of fast molecular descriptors and artificial neural networks approach in organochlorine compounds electron ionization mass spectra classification
PublicationDeveloping of theoretical tools can be very helpful for supporting new pollutant detection. Nowadays, a combination of mass spectrometry and chromatographic techniques are the most basic environmental monitoring methods. In this paper, two organochlorine compound mass spectra classification systems were proposed. The classification models were developed within the framework of artificial neural networks (ANNs) and fast 1D and...
-
Analysis of electrical patterns activity in artificial multi-stable neural networks
Publication -
Artificial Neural Networks for Prediction of Antibacterial Activity in Series of Imidazole Derivatives
Publication -
Automatic singing voice recognition employing neural networks and rough sets
PublicationCelem prac opisanych w referacie jest automatyczne rozpoznawanie głosów śpiewaczych. Do tego celu utworzona została baza nagrań próbek śpiewu profesjonalnego i amatorskiego. Próbki poddane zostały parametryzacji parametrami zaproponowanymi przez autorów ściśle do tego celu. Sposób wyznaczenia parametrów i ich interpretacja fizyczna przedstawione są w referacie. Parametry wprowadzane są do systemów decyzyjnych, klasyfikatorów opartych...
-
Use of Neural Networks in Diagnostics of Rolling-Element Bearing of the Induction Motor
Publication -
Extended Hopfield models of neural networks for combinatorial multiobjective optimization problems
Publication -
Neural Networks in the Diagnostics Process of Low-Power Solar Plant Devices
Publication -
Optimization of a three-bed adsorption chiller by genetic algorithms and neural networks
Publication -
Neural Networks Based on Ultrafast Time-Delayed Effects in Exciton Polaritons
Publication -
The concept of application of artificial neural networks for cultivation controlof cartilages in bioreactors.
PublicationNowym elementem niniejszej pracy jest omówienie problemów związanych z możliwością sterowania parametrami hydrodynamicznymi hodowanej w bioreaktorze chrząstki stawowej przy wykorzystaniu sztucznych sieci neuronowych. Przedstawiona została architektura strategii sterowania hodowlą tkanki z zastosowaniem tych sieci.
-
Musical phrase representation and recognition by means of neural networks and rough sets.
PublicationW artykule przedstawiono podstawowe definicje dotyczące frazy muzycznej. W eksperymentach posłużono się zapisem parametrycznym. W celu wzmocnienia procesu rozpoznawania wykorzystano kodowanie entropijne muzyki. W eksperymentach klasyfikacji oparto się o sztuczne sieci neuronowe i metodę zbiorów przybliżonych. Słowa kluczowe: fraza muzyczna, klasyfikacja, sztuczne sieci neuronowe, metoda zbiorów przybliżonych
-
Processing of musical data employing rough sets and artificial neural networks
PublicationArtykuł opisuje założenia systemu automatycznej identyfikacji muzyki i dźwięków muzycznych. Dokonano przeglądu standardu MPEG-7, ze szczególnym naciskiem na parametry opisowe dźwięku. Przedyskutowano problemy analizy danych audio, związane z zastosowaniami wykorzystującymi MPEG-7. W oparciu o eksperymenty przedstawiono efektywność deskryptorów niskiego poziomu w automatycznym rozpoznawaniu dźwięków instrumentów muzycznych. Przedyskutowano...
-
Comparison of effectiveness of musical sound separation algorithms employing neural networks.
PublicationNiniejszy referat przedstawia kilka algorytmów służących do separacji dźwięków instrumentów muzycznych. Zaproponowane podejście do dekompozycji miksów dźwiękowych opiera się na założeniu, że wysokość dźwięków w miksie jest znana, tzn. wejściem dla algorytmów jest przebieg zmian wysokości dźwięków składowych miksu. Proces estymacji fazy i amplitudy składowych harmonicznych wykorzystuje dopasowywanie zespolonych przebiegów harmonicznych...
-
Processing of musical data employing rough sets and artificial neural networks
PublicationArtykuł opisuje założenia systemu automatycznej identyfikacji muzyki i dźwięków muzycznych. Dokonano przeglądu standardu MPEG-7, ze szczególnym naciskiem na parametry opisowe dźwięku. Przedyskutowano problemy analizy danych audio, związane z zastosowaniami wykorzystującymi MPEG-7. W oparciu o eksperymenty przedstawiono efektywność deskryptorów niskiego poziomu w automatycznym rozpoznawaniu dźwięków instrumentów muzycznych. Przedyskutowano...
-
Estimation of musical sound separation algorithm effectiveness employing neural networks.
PublicationŚlepa separacja dźwięków sygnałów muzycznych zawartych w zmiksowanym materiale jest trudnym zadaniem. Jest to spowodowane tym, że dźwięki znajdujące się w relacjach harmonicznych mogą zawierać kolidujące składowe sinusoidalne (składowe harmoniczne). Ewaluacja wyników separacji jest również problematyczna, gdyż analiza błędu energetycznego często nie odzwierciedla subiektywnej jakości odseparowanych sygnałów. W tej publikacji zostały...