displaying 1000 best results Help
Search results for: GRAPHENE OXIDE, GRAPHENE, REDUCED GRAPHENE OXIDE,
-
Solvent-Free Synthesis of Phosphonic Graphene Derivative and Its Application in Mercury Ions Adsorption
PublicationFunctionalized graphene was efficiently prepared through ball-milling of graphite in the presence of dry ice. In this way, oxygen functional groups were introduced into material. The material was further chemically functionalized to produce graphene derivative with phosphonic groups. The obtained materials were characterized by spectroscopic and microscopic methods, along with thermogravimetric analysis. The newly developed material...
-
Low-frequency noise in Au-decorated graphene–Si Schottky barrier diode at selected ambient gases
PublicationWe report results of the current–voltage characteristics and low-frequency noise in Au nanoparticle (AuNP)-decorated graphene–Si Schottky barrier diodes. Measurements were conducted in ambient air with addition of either of two organic vapors, tetrahydrofuran [(CH2)4O; THF] and chloroform (CHCl3), as also during yellow light illumination (592nm), close to the measured particle plasmon polariton frequency of the Au nanoparticle...
-
Continuum contact model for friction between graphene sheets that accounts for surface anisotropy and curvature
PublicationUnderstanding the interaction mechanics between graphene layers and co-axial carbon nanotubes (CNTs) is essential for modeling graphene and CNT-based nanoelectromechanical systems. This work proposes a new continuum contact model to study interlayer interactions between curved graphene sheets. The continuum model is calibrated and validated using molecular dynamics (MD) simulations. These are carried out employing the reactive...
-
Analysis of graphene multi-strip planar guiding structures with the use of spectral domain approach
PublicationSpectral domain approach is modified and used to analyze some simple structures containing graphene strips. The modification is simple and concerns the Green’s function only. Moreover, the method is combined with the recently published root finding algorithms, which significantly improve the efficiency of the analysis. The results obtained for a simple guiding structure is verified and the field displacement effect is confirmed.
-
Towards Computer-Aided Graphene Covered TiO2-Cu/(CuxOy) Composite Design for the Purpose of Photoinduced Hydrogen Evolution
PublicationIn search a hydrogen source, we synthesized TiO2-Cu-graphene composite photocatalyst for hydrogen evolution. The catalyst is a new and unique material as it consists of copper-decorated TiO2 particles covered tightly in graphene and obtained in a fluidized bed reactor. Both, reduction of copper from Cu(CH3COO) at the surface of TiO2 particles and covering of TiO2-Cu in graphene thin layer by Chemical Vapour Deposition (CVD) were...
-
Organic Vapor Sensing Mechanisms by Large-Area Graphene Back-Gated Field-Effect Transistors under UV Irradiation
PublicationThe gas sensing properties of graphene back-gated field-effect transistor (GFET) sensors toward acetonitrile, tetrahydrofuran, and chloroform vapors were investigated with the focus on unfolding possible gas detection mechanisms. The FET configuration of the sensor device enabled gate voltage tuning for enhanced measurements of changes in DC electrical characteristics. Electrical measurements were combined with a fluctuation-enhanced...
-
Electronic structure and magnetism of samarium and neodymium adatoms on free-standing graphene
PublicationThe electronic structure of selected rare-earth atoms adsorbed on a free-standing graphene was investigated using methods beyond the conventional density functional theory (DFT+U, DFT +HIA, and DFT+ED). The influence of the electron correlations and the spin-orbit coupling on the magnetic properties has been examined. The DFT+U method predicts both atoms to carry local magnetic moments (spin and orbital) contrary to a nonmagnetic...
-
Anisotropic mechanical behavior and auxeticity of penta-graphene: Molecular statics/molecular dynamics studies
PublicationWe investigate the mechanical properties of penta-graphene (PG), a recently proposed two-dimensional carbon allotrope using atomistic simulation techniques combined with the empirical description of interatomic interactions. We report on the dependence of its three in-plane mechanical moduli (i.e. Young's modulus, Poisson's ratio and shear modulus) on the deformation direction, strain and temperature. We show that PG displays a...
-
Mechanical analysis of eccentric defected bilayer graphene sheets considering the van der Waals force
PublicationIn this article, we have tried to simulate nonlinear bending analysis of a double-layered graphene sheet which contains a geometrical imperfection based on an eccentric hole. The first-order shear deformation theory is considered to obtain the governing equations. Also, the nonlinear von Kármán strain field has been assumed in order to obtain large deformations. Whereas the double-layered graphene sheet has been considered, the...
-
Self-assembly of vertically oriented graphene nanostructures: multivariate characterisation by Minkowski functionals and fractal geometry
PublicationThe enormous self-assembly potential that graphene and its derived layered materials offer for responding to the contemporary environmental challenges has made it one of the most investigated materials. Hence, tuning its extraordinary properties and understanding the effect at all scales is crucial to tailoring highly customised electrodes. Vertically oriented graphene nanostructures, also known as carbon nanowalls (CNWs), due...
-
Thermal Buckling Analysis of Circular Bilayer Graphene sheets Resting on an Elastic Matrix Based on Nonlocal Continuum Mechanics
PublicationIn this article, the thermal buckling behavior of orthotropic circular bilayer graphene sheets embedded in the Winkler–Pasternak elastic medium is scrutinized. Using the nonlocal elasticity theory, the bilayer graphene sheets are modeled as a nonlocal double–layered plate that contains small scale effects and van der Waals (vdW) interaction forces. The vdW interaction forces between the layers are simulated as a set of linear springs...
-
Electrochemical determination of neurotransmitter serotonin using boron/nitrogen co-doped diamond-graphene nanowall-structured particles
PublicationElectrode fouling is a major issue in biological detection due to the adhesion of the protein itself and polymerization of biomolecules on the electrode surface, impeding the electron transfer ability and decreasing the current response. To overcome this issue, the use of anti-fouling material, especially boron-doped diamond (BDD) electrode, is an alternative way. However, the electrocatalytic activity of BDD is inadequate compared...
-
Electrochemical studies of Boron-Doped Diamond enriched Laser Induced Graphene structures
Open Research DataThis dataset contains electrochemical studies aimed to evaluate the capability of the utilization of laser-induced graphene (LIG) with incorporated boron-doped diamond nanowall (BDNW) hybrid nanostructures for microsupercapacitors. Selected results from this dataset were published in Advanced Functional Materials journal: https://doi.org/10.1002/adfm.202206097
-
Graphene and Its Derivatives for Energy Storage
Publication -
Electronic Circuits for Graphene-Based Biosensor
Publication -
Graphene-based materials for capacitive deionization
Publication -
Electrical and noise responses of graphene back-gated field-effect transistors enhanced by UV light for organic vapors sensing
Open Research DataBack-gated field-effect transistors with graphene channels (GFETs) were investigated toward organic vapors sensing. Two methods were used for sensing experiments including DC characteristics measurements and fluctuation-enhanced sensing by low-frequency noise studies. The data set consists of raw and modified data on GFET responses to acetonitrile,...
-
Growth and Isolation of Large Area Boron‐Doped Nanocrystalline Diamond Sheets: A Route toward Diamond‐on‐Graphene Heterojunction
PublicationMany material device applications would benefit from thin diamond coatings, but current growth techniques, such as chemical vapor deposition (CVD) or atomic layer deposition require high substrate and gas‐phase temperatures that would destroy the device being coated. The development of freestanding, thin boron‐doped diamond nanosheets grown on tantalum foil substrates via microwave plasma‐assisted CVD is reported. These diamond...
-
Adsorption-assisted transport of water vapour in super-hydrophobic membranes filled with multilayer graphene platelets
PublicationThe effects of confinement of multilayer graphene platelets in hydrophobic microporous polymeric membranes are here examined. Intermolecular interactions between water vapour molecules and nanocomposite membranes are envisaged to originate assisted transport of water vapour in membrane distillation processes when a suitable filler-polymer ratio is reached. Mass transport coefficients are estimated under different working conditions,...
-
Procognitive activity of nitric oxide inhibitors and donors in animal models
PublicationNitric oxide is a small gaseous molecule that plays important roles in the majority of biological functions. Impairments of NO-related pathways contribute to the majority of neurological disorders, such as Alzheimer’s disease (AD), and mental disorders, such as schizophrenia. Cognitive decline is one of the most serious impairments accompanying both AD and schizophrenia. In the present study, the activities of NO donors, slow (spermine...
-
Bending and buckling formulation of graphene sheets based on nonlocal simple first-order shear deformation theory
PublicationThis paper presents a formulation based on simple first-order shear deformation theory (S-FSDT) for large deflection and buckling of orthotropic single-layered graphene sheets (SLGSs). The S-FSDT has many advantages compared to the classical plate theory (CPT) and conventional FSDT such as needless of shear correction factor, containing less number of unknowns than the existing FSDT and strong similarities with the CPT. Governing...
-
Automated measurement method for assessing thermal-dependent electronic characteristics of thin boron-doped diamond-graphene nanowall structures
PublicationThis paper investigates the electrical properties of boron-doped diamond-graphene (B:DG) nanostructures, focusing on their semiconductor characteristics. These nanostructures are synthesized on fused silica glass and Si wafer substrates to compare their behaviour on different surfaces. A specialized measurement system, incorporating Python-automated code, was developed for an in-depth analysis of electronic properties under various...
-
Non-adiabatic superconductivity in the electron-doped graphene
Publication -
A review on Graphene/GNPs/GO modified asphalt
Publication -
Functionalization of graphene: does the organic chemistry matter?
Publication -
Tribological Behaviour of Copper-Graphene Composite Materials
Publication -
Self-organized multilayered graphene-boron doped diamond hybrid nanowalls for high performance electron emission devices
PublicationCarbon nanomaterials like nanotubes, nanoflakes/nanowalls and graphene have been used as electron sources due to their superior field electron emission (FEE) characteristics. Nevertheless, these materials show poor stability and a short lifetime, preventing them from being used in practical device applications. The intention of this study was to find an innovative nanomaterial, possessing both high robustness and reliable FEE behavior....
-
Electrical and noise responses of graphene/AlGaN/GaN field-effect transistor for nitrogen dioxide, teatrahydrofuran, and acetone sensing
Open Research DataThis data set consists of raw and modified data concerning current-voltage characteristics and low-frequency noise spectra measured for graphene/AlGaN/GaN field-effect transistor in the ambiance of selected gases (laboratory air, dry and wet synthetic air, nitrogen dioxide, tetrahydrofuran, and acetone). The data show that sensor responses are enhanced...
-
Elucidating charge transfer process and enhancing electrochemical performance of laser-induced graphene via surface engineering with sustainable hydrogel membranes: An electrochemist's perspective
PublicationLaser-induced graphene (LIG) has emerged as a promising solvent-free strategy for producing highly porous, 3D graphene structures, particularly for electrochemical applications. However, the unique character of LIG and hydrogel membrane (HM) coated LIG requires accounting for the specific conditions of its charge transfer process. This study investigates electron transfer kinetics and the electroactive surface area of LIG electrodes,...
-
Schottky Junction-Driven Photocatalytic Effect in Boron-Doped Diamond-Graphene Core–Shell Nanoarchitectures: An sp3/sp2 Framework for Environmental Remediation
PublicationSelf-formation of boron-doped diamond (BDD)-multilayer graphene (MLG) core–shell nanowalls (BDGNWs) via microwave plasma-enhanced chemical vapor deposition is systematically investigated. Here, the incorporation of nitrogen brings out the origin of MLG shells encapsulating the diamond core, resulting in unique sp3/sp2 hybridized frameworks. The evolution mechanism of the nanowall-like morphology with the BDD-MLG core–shell composition...
-
UV Light-Modulated Fluctuation-Enhanced Gas Sensing by Layers of Graphene Flakes/TiO2 Nanoparticles
PublicationWe present experimental results of fluctuation-enhanced gas sensing by low-cost resistive sensors made of a mixture of graphene flakes and TiO2 nanoparticles. Both components are photocatalytic and activated by UV light. Two UV LEDs of different wavelengths (362 and 394 nm) were applied to modulate the gas sensing of the layers. Resistance noise was recorded at low frequencies, between 8 Hz and 10 kHz. The sensors’ response was...
-
Shape memory thin films of Polyurethane: Does graphene content affect the recovery behavior of Polyurethane nanocomposites?
PublicationThin nanocomposite films of polyurethane have received remarkable attention due to their shape memory properties. As most of the reports focus on the beneficial aspects of the presence of nanofillers such as graphene nanoplatelets (GNPs) introduced into shape memory polymers, some research results reveal the opposite trend. The polyether/polyester-based polyurethane was synthesized through a condensation polymerization and the...
-
Electrical responses of Graphene-Silicon Schottky diodes toward nitrogen dioxide and tetrahydrofuran under irradiation
Open Research DataGraphene-Silicon Schottky junctions were utilized as gas sensors toward inorganic (nitrogen dioxide) and organic (tetrahydrofuran) gas qualitative and quantitative detection. The electrical responses of the sensors were collected in the form of current-voltage characteristics and measurements of current in time domain for a selected voltage bias. The...
-
Stannates, titanates and tantalates modified with carbon and graphene quantum dots for enhancement of visible-light photocatalytic activity
PublicationMost efforts in heterogeneous photocatalysis are focused on development of new and stable photoactive materials efficient in degradation of various pollutants under visible-light irradiation. In this regard, the wide-bandgap perovskite semiconductors, i.e., SrTiO3 (titanate), SrSnO3 (stannate) and AgTaO3 (tantalate), were prepared by a solvothermal method, and then modified with carbon quantum dots (CQDs) or graphene quantum dots...
-
Graphene-based electrochemical biosensing system for medical diagnostics
Publication -
The catalytic potential of high-κ dielectrics for graphene formation
Publication -
Reaction of different microorganisms to novel graphene-based nanomaterials
Publication -
Rapid cardiac ischemia detection with an epicardial graphene probe
Publication -
Post-plasma oxidation in water of graphene paper surface
Publication -
Microcracking monitoring and damage detection of graphene nanoplatelets-cement composites based on acoustic emission technology
PublicationThis study aims to identify the micro-cracking pattern and structural applications of cement composites replaced with 0 wt%, 0.04 wt%, and 0.08 wt% contents of graphene nanoplatelets (GNPs) over cement weight through acoustic emission (AE) monitoring under mechanical degradation. The ultraviolet-visible spectroscopy (UV–vis) results showed that at 60 min sonication period, GNP-4 showed maximum absorbance rate of 16.15% compared...
-
Electrochemical detection of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole on boron-doped diamond/graphene nanowall electrodes
PublicationWe present a promising approach to the electroanalytical detection of a specific nitroaromatic explosive in landfill leachates (LLs) that originated from a municipal solid waste plant. The paper is focused but not limited to the sensing of 4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole (TNBI) using differential pulse voltammetry and cyclic voltammetry. Highly electroactive nanocarbon was applied to determine low concentrations of...
-
Electrical and noise responses of Graphene-Silicon Schottky diodes decorated with Au nanoparticles for light-enhanced sensing of organic gases
Open Research DataGraphene-Silicon Schottky junctions decorated with Au nanoparticles were used for light-enhanced detection of organic tetrahydrofuran and chloroform. Au nanoparticles exhibited localized surface plasmon resonance (LSPR) in the range of yellow light; thus yellow LED (wavelength of 592 nm) was utilized to induce the plasmonic effect, that increased the...
-
Differential Quadrature Method for Dynamic Buckling of Graphene Sheet Coupled by a Viscoelastic Medium Using Neperian Frequency Based on Nonlocal Elasticity Theory
PublicationIn the present study, the dynamic buckling of the graphene sheet coupled by a viscoelastic matrix was studied. In light of the simplicity of Eringen's non-local continuum theory to considering the nanoscale influences, this theory was employed. Equations of motion and boundary conditions were obtained using Mindlin plate theory by taking nonlinear strains of von Kármán and Hamilton's principle into account. On the other hand, a...
-
The effect of boron concentration on the electrical, morphological and optical properties of boron-doped nanocrystalline diamond sheets: Tuning the diamond-on-graphene vertical junction
PublicationIn this paper, the effect of boron doping on the electrical, morphological and structural properties of free-standing nanocrystalline diamond sheets (thickness ~ 1 μm) was investigated. For this purpose, we used diamond films delaminated from a mirror-polished tantalum substrate following a microwave plasma-assisted chemical vapor deposition process, each grown with a different [B]/[C] ratio (up to 20,000 ppm) in the gas phase....
-
Journal of Non-Oxide Glasses
Journals -
Facile and continuous synthesis of graphene nanoflakes in RF thermal plasma
Publication -
Applications of Graphene-based Materials in Chromatography and Sample Preparation: A Review
Publication -
Upcycling Waste Polypropylene into Graphene Flakes on Organically Modified Montmorillonite
Publication -
Dispersion, compatibility, and rheological properties of graphene-modified asphalt binders
Publication -
Laboratory investigation of graphene modified asphalt efficacy to pavement performance
Publication