Search results for: optical parameters
-
Low-coherence method of hematocrit measurement
PublicationDuring the last thirty years low-coherence measurement methods have gained popularity because of their unique advantages. Low-coherence interferometry, low-coherence reflectometry and low-coherence optical tomography offer resolution and dynamic range of measurement at the range of classical optical techniques. Moreover, they enable measurements of the absolute value of the optical path differences, which is still an unsolved problem...
-
Low temperature growth of diamond films on optical fibers using Linear Antenna CVD system
PublicationIt is not trivial to achieve a good quality diamond-coated fibre interface due to a large difference in the properties and composition of the diamond films (or use coating even) and the optical fibre material, i.e. fused silica. One of the biggest problems is the high temperature during the deposition which influences the optical fibre or optical fibre sensor structure (e.g. long-period gratings (LPG)). The greatest advantage of...
-
Plasmon resonance in gold-silver nanoalloys
Open Research DataSurface plasmon resonance (SPR) can lead to improve or formation a new linear or nonlinear optical phenomena. Especially it can enhance a light emission from luminescence materials. The presence of metal nanostructures or nanoparticles is necessary to excitation of the SPR. It is well known that gold and silver nanostructures exhibit plasmon resonance...
-
Optical properties of polyazomethine with oxygen atom in the backbon
PublicationPurpose: The aim of this paper is to show results of optical measurement performed on poly –(1-(4-methylenephenoxy-1)phenylene-4-methylene-1.4-phenylnenitrylomethylene) (PPI2) polyazomethine thinfilms and to compare with poly - (1.4-phenylenemethylenenitrilo-1.4 phenylenenitrilomethylene) (PPI).Design/methodology/approach: Influence of oxygen atom in the polymer chain on optical properties ofpolyazomethine was investigated....
-
Development of novel optoelectronic sensory structures utilising colour centres in nanodiamonds and their interactions with analytes
PublicationThe goal of this dissertation was to develop and assess surface modifications of fluorescent nanodiamonds (NDs) for optical sensing. Three modification routes were tested, each aimed at a different application. Modification with poly-L-lysine (pLys) was verified for optical sensing of pH via an interrelationship between electrically negative (NV¯) and neutral (NV0) nitrogen-vacancy centres. Immobilisation of Ochratoxin A (OTA),...
-
Role of nitrogen in optical and electrical band gaps of hydrogenated/hydrogen free carbon nitride film
PublicationWe report the optical and electrical band gap energy of amorphous hydrogenated carbon nitride (a-HCNx) and carbon nitride (a-CNx) as a function of nitrogen concentration (N/C). The optical band gap of a-HCNx and a-CNx films has been determined by means of Ellipsometry and UV-VIS. Both optical and electrical band gaps increase with elevated nitrogen concentration. Experimentally obtained electrical band gap is compared with the...
-
System supporting behavioral therapy for children with autism
PublicationIn this paper, a system supporting behavioral therapy for autistic children is presented. The system consists of sensors network, base station and a brooch indicating person's emotional states. The system can be used to measure values of physiological parameters that are associated with changes in the emotional state. In the future, it can be useful to inform the autistic child and the therapist about the emotional state of the...
-
Results of wettability evaluation of acrylic bone cements incorporating various components
Open Research DataThe database contains the images of the contact angle measurements of modified bone cements using the optical tensiometer. The following modifications were evaluated: the addition of biodegradable components (including chitosan, cellulose, tricalcium phosphate, polydioxanone or magnesium), the addition of bioactive components (bioglasses) or the addition...
-
Distance measurement by the low coherent interferometer
Open Research DataThe obtained data was acquired by the interferometric fiber-optic sensor of distance. The setup was constructed of a broadband light source working at the central wavelength of 1560 nm, an optical spectrum analyzer and a fiber-optic 2x1 coupler (with the power split 50:50). All elements were connected by standard single-mode optical fibers. The measurement...
-
Spectral reflectance modeling of ZnO layers made with Atomic Layer Deposition for application in optical fiber Fabry-Perot interferometric sensors
PublicationSuitability of zinc oxide (ZnO) layers grown using Atomic Layer Deposition for operation in optical-fiber extrinsic Fabry-Perot sensors is investigated using a numerical model. Reflectance spectra obtained using the developed model indicate that the application of these layers in optical-fiber extrinsic Fabry-Perot sensors is difficult as it may require a source whose spectrum width is about 300 nm. A series of ZnO layers grown...
-
Application of titanium dioxide thin films in fiber optic sensors
PublicationThe advance in the nanotechnology and fabrication of micro- and nanostructures has significant impact on development of new optical sensors. Presented study focuses on the applications of the titanium dioxide (TiO2) thin films in fiber optic sensors. The concept of a sensing fiber optic interferometer integrating TiO2 thin film is presented. The cavity of this interferometer is delimited by a 80 nm film fabricated on the end-face...
-
Full scattering profile of circular optical phantoms mimicking biological tissue
PublicationHuman tissue is one of the most complex optical media since it is turbid and nonhomogeneous. In our poster, we suggest a new type of skin phantom and an optical method for sensing physiological tissue condition, basing on the collection of the ejected light at all exit angles, to receive the full scattering profile. Conducted experiments were carried out on an unique set-up for noninvasive encircled measurement. Set-up consisted...
-
Results of OM examination of acrylic bone cements incorporating various components
Open Research DataThe database contains the images of the microstructure of modified bone cements observed on the cross-section with the optical microscope (OM). The following modifications were evaluated: the addition of biodegradable components (including chitosan, cellulose, tricalcium phosphate, polydioxanone or magnesium), the addition of bioactive components (bioglasses)...
-
Role of nitrogen in evolution of sp2/sp3 bonding and optical band gap in hydrogenated carbon nitride
PublicationDrastic changes in the bonding are found in amorphous hydrogenated carbon nitride (a-CNx:H) film as a function of nitrogen concentration (or N/C ratio). The total C-sp3 fraction and hardness shows a sharp decrease (at N/C = 0.40) whereas optical band gap and resistivity shows a gradual increase as nitrogen concentration increases from 0.07 to 0.58. Raman spectrum of a-CNx:H film is fitted with both Gaussian (integrated intensity...
-
Magnetic field mapping along a NV-rich nanodiamond-doped fiber
PublicationIntegration of NV−-rich diamond with optical fibers enables guiding quantum information on the spin state of the NV− color center. Diamond-functionalized optical fiber sensors have been demonstrated with impressive sub-nanotesla magnetic field sensitivities over localized magnetic field sources, but their potential for distributed sensing remains unexplored. The volumetric incorporation of diamonds into the optical fiber core allows...
-
Time-frequency analysis in optical coherence tomography for technical objects examination
PublicationOptical coherence tomography (OCT) is one of the most advanced optical measurement techniques for complex structure visualization. The advantages of OCT have been used for surface and subsurface defect detection in composite materials, polymers, ceramics, non-metallic protective coatings, and many more. Our research activity has been focused on timefrequency spectroscopic analysis in OCT. It is based on time resolved spectral analysis...
-
Optical properties of the chemotherapy drugs used in the central nervous system lymphoma therapy: monitoring drug delivery
PublicationOur aim is to optically monitor the delivery of the chemotherapy drugs for brain tumours, particularly used in the central nervous system (CNS) lymphoma therapy. In vivo monitoring would help to optimize the treatment and avoiding unnecessary medications. Moreover, it would be beneficial to be able to measure which of the multi-regimen drugs actually do penetrate and how well into the brain tissue. There exist several potential...
-
The absorption and fluorescence spectra of novel bisacridines (IKE15-19, IKE21) and IE10, potential antifungal agents
Open Research DataOptical measurements of novel bisacridines (IKE15-19, IKE21) and IE10 were conducted. The absorption spectra were recorded from 300 to 800 nm. The fluorescence emission spectra were determined with excitation and emission wavelengths described in the file. All measurements were recorded using a multiplate reader, Tecan Spark 10M.
-
Introduction to the ONDM 2022 special issue
PublicationThis JOCN special issue contains extended versions of selected papers presented at the 26th International Conference on Optical Network Design and Modeling (ONDM 2022), which took place 16–19 May 2022 at Warsaw University of Technology, Warsaw, Poland. The topics covered by the papers represent trends in optical networking research: application of machine learning to network management, cross-layer network performance optimization,...
-
1D portable optical coherence tomography system
Publication—Imaging methods are an expanding branch of technology, which involves data acquisition and analysis of images for research and diagnostics. This paper has been devoted to the description of the optical design for a one-dimensional, portable optical coherence tomography (OCT) system. The Mach-Zehnder interferometer has been designed in the presented study. The description of the construction and applied hardware solutions have...
-
Investigation of H2:CH4 plasma composition by means of spatially resolved optical spectroscopy
PublicationThe system based on spatially resolved optical emission spectroscopy dedicated for in situ diagnostics of plasma assisted CVD processes is presented in this paper. Measurement system coupled with chemical vapour deposition chamber by dedicated fiber-optic paths enables investigation of spatial distribution of species densities (Hx, H+, CH, CH+) during chemical vapour deposition process. Experiments were performed for a various...
-
Planning a Cost-Effective Delay-Constrained Passive Optical Network for 5G Fronthaul
PublicationWith the rapid growth in the telecommunications industry moving towards 5G and beyond (5GB) and the emergence of data-hungry and time-sensitive applications, Mobile Network Operators (MNOs) are faced with a considerable challenge to keep up with these new demands. Cloud radio access network (CRAN) has emerged as a cost-effective architecture that improves 5GB performance. The fronthaul segment of the CRAN necessitates a high-capacity...
-
Practical issues for the implementation of survivability and recovery techniques in optical networks
PublicationFailures in optical networks are inevitable. They may occur during work being done for the maintenance of other infrastructures, or on a larger scale as the result of an attack or large-scale disaster. As a result, service availability, an important aspect of Quality of Service (QoS), is often degraded. Appropriate fault recovery techniques are thus crucial to meet the requirements set by the Service Level Agreements (SLAs) between...
-
Nanoparticles displacement analysis using optical coherence tomography
PublicationOptical coherence tomography (OCT) is a versatile optical method for cross-sectional and 3D imaging of biological and non-biological objects. Here we are going to present the application of polarization sensitive spectroscopic OCT system (PS-SOCT) for quantitative measurements of materials containing nanoparticles. The PS-SOCT combines the polarization sensitive analysis with time-frequency analysis. In this contribution the benefits...
-
Detection system for optical coherence tomography: Czerny-Turner spectrometer
PublicationResearch methods based on spectral analysis have powerful impact on development in many field of science. Signal spectrum can be a source of useful and important data. It enables to obtain information about physical and chemical properties of tested materials. This paper has been devoted to describe optical design for high resolution spectrometer, which is significant element of optical coherence tomography (OCT) systems. Designed...
-
Plasmon resonance in a TiO2-Au NPs structures
Open Research DataInvestigated structures were deposited on a pre cleaned Corning 1737 glass substrates, which provided flat optical transmission characteristics and high transmission coefficient in a visible light range. Plasmonic nanostructures were formed as a result of thermal annealing. For gold films with thickness of 2.8 nm depiction a table-top dc magnetron sputtering...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 130 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 110 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 120 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 100 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
List of initial and final geometries of hybrid organic-inborganic perovskites
Open Research DataList of initial and optimized geometries of hybrid organic-inorganic perovskites. Calculations were performed on DFT level of theory. Those results were reported in the Influence of Orientational Disorder on the Optical Absorption Properties of the Hybrid Metal‐Halide Perovskite CH3NH3PbI3 publication. Geometries, HOMO, LUMO, Band gap energies are concatenated...
-
Structural and luminescence properties of B2O3-Bi2O3+10AlF3 glasses doped with Eu3+/Dy3+ ions
Open Research DataThe attached data contains the results of measurements of B2O3-Bi2O3 and B2O3-Bi2O3+10AlF3 glasses doped with Eu3+ and Dy3+ ions in different molar ratios. Glasses were synthesized by the melt quenching technique. On their basis, the structural, optical, and luminescence properties of synthesized samples were characterized. The dataset includes XRD,...
-
Functional fluorine-doped tin oxide coating for opto-electrochemical label-free biosensors
PublicationSensors operating in multiple domains, such as optical and electrochemical, offer properties making biosensing more effective than those working in a single domain. To combine such domains in one sensing device, materials offering a certain set of properties are required. Fluorine-doped tin oxide (FTO) thin film is discussed in this work as functional optically for guiding lossy modes and simultaneously electrochemically, i.e....
-
MONTE CARLO MODELING OF OPTICAL SENSOR FOR POST-OPERATIVE FREE FLAP MONITORING
PublicationAfter a preliminary study of the currently employed methods in vitality monitoring of the tissue flaps (TRAM, DIEP, SIEA), a usefulness of optical techniques is discussed. It seems that one of the most promising in monitoring tissue flaps blood flow is a near infrared spectrometry (NIRS). However, a special design of a measurement sensor has to be developed. First, basing on the literature study an optical “window” is characterized....
-
QoS Resource Reservation Mechanisms for Switched Optical Networks
PublicationThe paper regards the problem of resource reservation mechanisms for Quality of Service support in switched optical networks. The authors propose modifications and extensions for resources reservation strategy algorithms with resources pools, link capacity threshold and adaptive advance reservation approach. They examine proposed solutions in Automatically Switched Optical Network with Generalized Multi-Protocol Label Switching...
-
Application of fiber optic sensors using Machine Learning algorithms for temperature measurement of lithium-ion batteries
PublicationOptical fiber sensorsusing low-coherence interferometry require processing ofthe output spectrum or interferogramto quickly and accurately determine the instantaneous value of the measured quantity, such as temperature.Methods based on machine learning are a good candidate for this application. The application of four such methods in an optical fiber temperature sensoris demonstrated.Using aZnO-coated...
-
Measurement of complex refractive index of human blood by low-coherence interferometry
PublicationIn this article, the usefulness of the optical technique for measurements of blood complex refractive index has been examined. Measurement of optical properties of human blood is difficult to perform because of its nonuniform nature. However, results of my investigation have shown the usefulness of low-coherencei nterferometry for measurement complex refractive index of human blood. Furthermore, mathematical analysis of spectrum...
-
Vibrational Quenching of Optically Pumped Carbon Dimer Anions
PublicationCareful control of quantum states is a gateway to research in many areas of science such as quantum information, quantum-controlled chemistry, and astrophysical processes. Precise optical control of molecular ions remains a challenge due to the scarcity of suitable level schemes, and direct laser cooling has not yet been achieved for either positive or negative molecular ions. Using a cryogenic wire trap, we show how the internal...
-
Optical profilometer
PublicationThe profilometry plays a huge role in the most fields of science and technology. It allows to measure the profile of the surface with high-resolution. This technique is used in the fields like optic, electronic, medicine, automotive, and much more. The aim of the current work was to design and build optical profilometer based on the interference phenomena. The developed device has been working with He-Ne laser (632.8 nm). The optical...
-
The realization of ASON/GMPLS control plane
PublicationASON (Automatic Switched Optical Network) is a concept of optical network recommended in G.8080/Y.1304 by ITU-T. Control Plane of this network could be based on GMPLS (Generalized Multi-Protocol Label Switching) protocols like RSVP-TE, OSPF-TE, LMP. This solution is named ASON/GMPLS. In this chapter we present the control plane problems and proposes ASON/GMPLS network realization that are tested on testbed consists of three and...
-
Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers
PublicationIn this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28) segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD). Measurements were performed with the interferometer illuminated by two broadband sources operating...
-
Electrochemically directed biofunctionalization of a lossy-mode resonance optical fiber sensor
PublicationIn this work, we present a direct electrochemical biofunctionalization of an indium-tin-oxide-coated lossy-mode resonance optical fiber sensor. The functionalization using a biotin derivative was performed by cyclic voltammetry in a 10 mM biotin hydrazide solution. All stages of the experiment were simultaneously verified with optical and electrochemical techniques. Performed measurements indicate the presence of a poly-biotin...
-
Cost-Efficient Optical Fronthaul Architectures for 5G and Future 6G Networks
PublicationFifth-generation and Beyond (5GB) wireless networks have introduced new centralized architectures such as cloud radio access network (CRAN), which necessitate extremely high-capacity low latency Fronthaul (FH). CRAN has many advantageous features in terms of cost reduction, performance enhancement, ease of deployment, and centralization of network management. Nevertheless, designing and deploying a cost-efficient FH is still a...
-
Disaster Resilience of Optical Networks: State of the Art, Challenges, and Opportunities
PublicationFor several decades, optical networks, due to their high capacity and long-distance transmission range, have been used as the major communication technology to serve network traffic, especially in the core and metro segments of communication networks. Unfortunately, our society has often experienced how the correct functioning of these critical infrastructures can be substantially hindered by massive failures triggered by natural...
-
Au nanostructures coated with a ultrathin film of Al2O3 - measurements and FDTD simulations
Open Research DataGold plasmonic platforms have been coated with an ultra-thin films of aluminium oxide. Optical measurements, showing the influence of the thickness of Al2O3 on plasmon resonance position. The observed red-shift of the resonance location with the increase of the thickness of the Al2O3 film, can be explained by the change in the dielectric function of...
-
Ab-initio study of electrical and optical properties of allylamine
PublicationThe Density functional theory is one of most promising methodology in fast and accurate calculations of electrical and optical properties from the atomic basis. In this paper, we calculate electrical and optical properties of allylamine (2-propen 1- amine) in terms of accuracy and speed of calculations obtained by selection of DFT-1/2 method with ultrasoft Vanderbilt pseudopotentials. Comparison of density of states between...
-
Ab-initio study of electrical and optical properties of allylamine
PublicationThe Density functional theory is one of most promising methodology in fast and accurate calculations of electrical and optical properties from the atomic basis. In this paper, we calculate electrical and optical properties of allylamine (2-propen 1- amine) in terms of accuracy and speed of calculations obtained by selection of DFT-1/2 method with ultrasoft Vanderbilt pseudopotentials. Comparison of density of states between molecule...
-
Tuning of the plasmon resonance location in Au nanostructures coated with a ultrathin film of Al2O3 – Optical measurements and FDTD simulations
PublicationThe Au nanostructures have been coated with an ultra-thin films of amorphous aluminium oxide. Optical absorption spectra show the influence of the thickness of Al2O3 on plasmon resonance wavelength. The observed red-shift of the resonance location with the increase of the thickness of the Al2O3 film, can be explained by the change in the dielectric function of this film. It allows control of the optical spectra of the coated particles....
-
Topological extraordinary optical transmission
PublicationΤhe incumbent technology for bringing light to the nanoscale, the near-field scanning optical microscope, has notoriously small throughput efficiencies of the order of 10^4-10^5 or less. We report on a broadband, topological, unidirectionally guiding structure, not requiring adiabatic tapering and, in principle, enabling near-perfect (∼100%) optical transmission through an unstructured single arbitrarily subdiffraction slit at...
-
Ellipsometric investigation of nitrogen doped diamond thin films grown in microwave CH4/H2/N2 plasma enhanced chemical vapor deposition
PublicationThe influence of N2 concentration (1%–8%) in CH4/H2/N2 plasma on structure and optical properties of nitrogen doped diamond (NDD) films was investigated. Thickness, roughness, and optical properties of the NDD films in the VIS–NIR range were investigated on the silicon substrates using spectroscopic ellipsometry. The samples exhibited relatively high refractive index (2.6 6 0.25 at 550 nm) and extinction coefficient (0.05 6 0.02...