Search results for: computational analysis
-
Monte Carlo simulations of the fracture resistance of an asphalt pavement layer
PublicationThe purpose of the proposed numerical model is to analyze the cracking of the wearing course in a pavement overlay, assuming a pre-existing crack that passes through the binding layer and base. The computations employed the author's simulation-based Monte Carlo material model, which describes the failure process of a Semi-Circular Bend (SCB) specimen during standard laboratory testing of asphalt concrete. A key feature of this...
-
Low-Cost Behavioral Modeling of Antennas by Dimensionality Reduction and Domain Confinement
PublicationBehavioral modeling has been rising in importance in modern antenna design. It is primarily employed to diminish the computational cost of procedures involving massive full-wave electromagnetic (EM) simulations. Cheaper alternative offer surrogate models, yet, setting up data-driven surrogates is impeded by, among others, the curse of dimensionality. This article introduces a novel approach to reduced-cost surrogate modeling of...
-
On Nature-Inspired Design Optimization of Antenna Structures Using Variable-Resolution EM Models
PublicationNumerical optimization has been ubiquitous in antenna design for over a decade or so. It is indispensable in handling of multiple geometry/material parameters, performance goals, and constraints. It is also challenging as it incurs significant CPU expenses, especially when the underlying computational model involves full-wave electromagnetic (EM) analysis. In most practical cases, the latter is imperative to ensure evaluation reliability....
-
Expedited Trust-Region-Based Design Closure of Antennas by Variable-Resolution EM Simulations
PublicationThe observed growth in the complexity of modern antenna topologies fostered a widespread employment of numerical optimization methods as the primary tools for final adjustment of the system parameters. This is mainly caused by insufficiency of traditional design closure approaches, largely based on parameter sweeping. Reliable evaluation of complex antenna structures requires full-wave electromagnetic (EM) analysis. Yet, EM-driven...
-
Long Distance Geographically Distributed InfiniBand Based Computing
PublicationCollaboration between multiple computing centres, referred as federated computing is becom- ing important pillar of High Performance Computing (HPC) and will be one of its key components in the future. To test technical possibilities of future collaboration using 100 Gb optic fiber link (Connection was 900 km in length with 9 ms RTT time) we prepared two scenarios of operation. In the first one, Interdisciplinary Centre for Mathematical...
-
Image Classification Based on Video Segments
PublicationIn the dissertation a new method for improving the quality of classifications of images in video streams has been proposed and analyzed. In multiple fields concerning such a classification, the proposed algorithms focus on the analysis of single frames. This class of algorithms has been named OFA (One Frame Analyzed).In the dissertation, small segments of the video are considered and each image is analyzed in the context of its...
-
A GPU Solver for Sparse Generalized Eigenvalue Problems with Symmetric Complex-Valued Matrices Obtained Using Higher-Order FEM
PublicationThe paper discusses a fast implementation of the stabilized locally optimal block preconditioned conjugate gradient (sLOBPCG) method, using a hierarchical multilevel preconditioner to solve nonHermitian sparse generalized eigenvalue problems with large symmetric complex-valued matrices obtained using the higher-order finite-element method (FEM), applied to the analysis of a microwave resonator. The resonant frequencies of the low-order...
-
Nonlinear material identification of heterogeneous isogeometric Kirchhoff–Love shells
PublicationThis work presents a Finite Element Model Updating inverse methodology for reconstructing heterogeneous materialdistributions based on an efficient isogeometric shell formulation. It uses nonlinear hyperelastic material models suitable fordescribing incompressible material behavior as well as initially curved shells. The material distribution is discretized by bilinearelements such that the nodal values...
-
Modele i algorytmy dla grafowych struktur defensywnych
PublicationW niniejszej pracy przeprowadzono analizę złożoności istnienia struktur defensywnych oraz równowag strategicznych w grafach. W przypadku struktur defensywnych badano modele koalicji defensywnych, zbiorów defensywnych i koalicji krawędziowych – każdy z nich w wersji globalnej, tj. z wymogiem dominacji całego grafu. W przypadku modeli równowagi strategicznej badano równowagę strategiczną koalicji defensywnych, równowagę strategiczną...
-
Empirical analysis of tree-based classification models for customer churn prediction
PublicationCustomer churn is a vital and reoccurring problem facing most business industries, particularly the telecommunications industry. Considering the fierce competition among telecommunications firms and the high expenses of attracting and gaining new subscribers, keeping existing loyal subscribers becomes crucial. Early prediction of disgruntled subscribers can assist telecommunications firms in identifying the reasons for churn and...
-
On Improved-Reliability Design Optimization of High-Frequency Structures Using Local Search Algorithms
PublicationThe role of numerical optimization has been continuously growing in the design of high-frequency structures, including microwave and antenna components. At the same time, accurate evaluation of electrical characteristics necessitates full-wave electromagnetic (EM) analysis, which is CPU intensive, especially for complex systems. As rigorous optimization routines involve repetitive EM simulations, the associated cost may be significant....
-
On Accuracy Modeling of Gas Turbine Cycles by the In-house COM-GAS Code
PublicationIn this paper, a comparison of accuracy modeling of gas turbine cycles between the basic (classical) model and the in-house COM-GAS code has been presented. The basic model uses a semi-perfect gas and well known projecting assumption. On the other hand, the computational flow mechanics (CFM) basis on a real gas by using thermodynamic tables. The thermodynamic analysis of thermal cycles, simply gas cycle GT8C and gas turbine cycle...
-
A Model-Order Reduction Approach for Electromagnetic Problems With Nonaffine Frequency Dependence
PublicationThe aim of this paper is to present a novel model-order reduction (MOR) technique for the efcient frequency-domain nite-element method (FEM) simulation of microwave components. It is based on the standard reduced-basis method, but the subsequent expansion frequency points are selected following the so-called sparsied greedy strategy. This feature makes it especially useful to perform a fast-frequency sweep of problems that lead...
-
Localization and Orientation of Xanthophylls in a Lipid Bilayer
PublicationXanthophylls (polar carotenoids) play diverse biological roles, among which are modulation of the physical properties of lipid membranes and protection of biomembranes against oxidative damage. Molecular mechanisms underlying these functions are intimately related to the localization and orientation of xanthophyll molecules in lipid membranes. In the present work, we address the problem of localization and orientation of two xanthophylls...
-
Reduced-cost surrogate modelling of compact microwave components by two-level kriging interpolation
PublicationFull-wave electromagnetic (EM) analysis is a versatile tool for evaluating the performance of high-frequency components. Its potential drawback is its high computational cost, inhibiting the execution of EM-driven tasks requiring massive simulations. The applicability of equivalent network models is limited owing to the topological complexity of compact microstrip components because of EM cross-coupling effects. Development of...
-
A Simplistic Downlink Channel Estimation Method for NB-IoT
PublicationThis paper presents a downlink channel estimation method intended for a Narrowband Internet of Things (NB-IoT) access link. Due to its low computational complexity, this method is well suited for energy-efficient IoT devices, still providing acceptable reception quality in terms of signal-to-noise (SNR) performance. This paper describes the physical layer of NB-IoT within the scope of channel estimation, and also reviews existing...
-
Buckling Analysis of a Micro Composite Plate with Nano Coating Based on the Modified Couple Stress Theory
PublicationThe present study investigates the buckling of a thick sandwich plate under the biaxial non-uniform compression using the modified couple stress theory with various boundary conditions. For this purpose, the top and bottom faces are orthotropic graphene sheets and for the central core the isotropic soft materials are investigated. The simplified first order shear deformation theory (S-FSDT) is employed and the governing differential...
-
Detecting Apples in the Wild: Potential for Harvest Quantity Estimation
PublicationKnowing the exact number of fruits and trees helps farmers to make better decisions in their orchard production management. The current practice of crop estimation practice often involves manual counting of fruits (before harvesting), which is an extremely time-consuming and costly process. Additionally, this is not practicable for large orchards. Thanks to the changes that have taken place in recent years in the field of image...
-
An analytical four-layer horizontal electric current dipole model for analysing underwater electric potential in shallow seawater
PublicationThe paper presents a new analytical four‑layer (air–water–bottom–non‑conductive layer) horizontal electric dipole model which allows an accurate approximation of ship’s Underwater Electric Potential (UEP) from a sufficient depth in shallow coastal marine waters. The numerical methods, usually Finite Element Method (FEM) or Boundary Elements Method (BEM), are typically used to estimate the electric field and the distribution of...
-
Low-Cost Yield-Driven Design of Antenna Structures Using Response-Variability Essential Directions and Parameter Space Reduction
PublicationQuantifying the effects of fabrication tolerances and uncertainties of other types is fundamental to improve antenna design immunity to limited accuracy of manufacturing procedures and technological spread of material parameters. This is of paramount importance especially for antenna design in the industrial context. Degradation of electrical and field properties due to geometry parameter deviations often manifests itself as, e.g.,...
-
Optimization-based stacked machine-learning method for seismic probability and risk assessment of reinforced concrete shear walls
PublicationEfficient seismic risk assessment aids decision-makers in formulating citywide risk mitigation plans, providing insights into building performance and retrofitting costs. The complexity of modeling, analysis, and post-processing of the results makes it hard to fast-track the seismic probabilities, and there is a need to optimize the computational time. This research addresses seismic probability and risk assessment of reinforced...
-
Computationally-Efficient Statistical Design and Yield Optimization of Resonator-Based Notch Filters Using Feature-Based Surrogates
PublicationModern microwave devices are designed to fulfill stringent requirements pertaining to electrical performance, which requires, among others, a meticulous tuning of their geometry parameters. When moving up in frequency, physical dimensions of passive microwave circuits become smaller, making the system performance increasingly susceptible to manufacturing tolerances. In particular, inherent inaccuracy of fabrication processes affect...
-
Objective selection of minimum acceptable mesh refinement for EMC simulations
PublicationOptimization of computational electromagnetics (CEM) simulation models can be costly in both time and computing resources. Mesh refinement is a key parameter in determining the number of unknowns to be processed. In turn, this controls the time and memory required for a simulation. Hence, it is important to use only a mesh that is good enough for the objectives of the simulation, whether for direct handling of high-fidelity EM...
-
Non-Gaussian Resistance Fluctuations in Gold-Nanoparticle-Based Gas Sensors: An Appraisal of Different Evaluation Techniques
PublicationVolatile organic compounds, such as formaldehyde, can be used as biomarkers in human exhaled breath in order to non-invasively detect various diseases, and the same compounds are of much interest also in the context of environmental monitoring and protection. Here, we report on a recently-developed gas sensor, based on surface-functionalized gold nanoparticles, which is able to generate voltage noise with a distinctly non-Gaussian...
-
Impact of dyes isomerization effect on the charge transfer phenomenon occurring on the dye/nanosemiconductor interface
PublicationThe present work aimed to find the answer how does the isomerization of the Ru based dyes affect the overall photon-to-current efficiency of the DSSCs and to explain the charge transfer phenomenon occurring on the dye/ nanosemiconductor interface. Therefore, electronic and optical properties of three bipyridine derivatives anchored on the TiO2 electrode were investigated by computational simulations based on quantum chemistry codes...
-
The use of thermal imaging camera to estimate velocity profiles based on temperature distribution in a free convection boundary layer
PublicationThis work describes an attempt to assess whether the temperature field from a thermal imaging camera can be converted into a velocity field with an accuracy sufficient for qualitative conducting or describing the phenomenon, i.e. when the Navier-Stokes, Fourier-Kirchhoff and continuity equations are mutually coupled. The consequence of this link between temperature fields and velocity is the possibility to formulate the hypothesis...
-
Application of the Monte Carlo algorithm for solving volume integral equation in light scattering simulations
PublicationVarious numerical methods were proposed for analysis of the light scattering phenomenon. Important group of these methods is based on solving the volume integral equation describing the light scattering process. The popular method from this group is the discrete dipole approximation (DDA). DDA uses various numerical algorithms to solve the discretized integral equation. In the recent years, the application of the Monte Carlo (MC)...
-
Expedited Gradient-Based Design Closure of Antennas Using Variable-Resolution Simulations and Sparse Sensitivity Updates
PublicationNumerical optimization has been playing an increasingly important role in the design of contemporary antenna systems. Due to the shortage of design-ready theoretical models, optimization is mainly based on electromagnetic (EM) analysis, which tends to be costly. Numerous techniques have evolved to abate this cost, including surrogate-assisted frameworks for global optimization, or sparse sensitivity updates for speeding up local...
-
Active Learning on Ensemble Machine-Learning Model to Retrofit Buildings Under Seismic Mainshock-Aftershock Sequence
PublicationThis research presents an efficient computational method for retrofitting of buildings by employing an active learning-based ensemble machine learning (AL-Ensemble ML) approach developed in OpenSees, Python and MATLAB. The results of the study shows that the AL-Ensemble ML model provides the most accurate estimations of interstory drift (ID) and residual interstory drift (RID) for steel structures using a dataset of 2-, to 9-story...
-
Modeling the effect of electric vehicles on noise levels in the vicinity of rural road sections
PublicationNumerous European countries experience a steady increase in the share of electric (EV) and hybrid electric (HEV) vehicles in the traffic stream. These vehicles, often referred to as low- or zero-emission vehicles, significantly reduce air pollution in the road environment. They also have a positive effect on noise levels in city centers and in the surroundings of low-speed roads. Nevertheless, issues related to modeling noise from...
-
Prediction of Overall In Vitro Microsomal Stability of Drug Candidates Based on Molecular Modeling and Support Vector Machines. Case Study of Novel Arylpiperazines Derivatives
PublicationOther than efficacy of interaction with the molecular target, metabolic stability is the primary factor responsible for the failure or success of a compound in the drug development pipeline. The ideal drug candidate should be stable enough to reach its therapeutic site of action. Despite many recent excellent achievements in the field of computational methods supporting drug metabolism studies, a well-recognized procedure to model...
-
Modeling of Passive and Forced Convection Heat Transfer in Channels with Rib Turbulators
PublicationThe main goal of the research presented in this paper was the experimental and numerical analysis of heat enhancement and aerodynamic phenomena during air flow in a channel equipped with flow turbulators in the form of properly configured ribs. The use of ribs intensifies the heat transfer and at the same time increases not only the flow resistance but also the energy costs. Therefore, designing modern heat exchangers with optimal...
-
Cost-Efficient EM-Driven Size Reduction of Antenna Structures by Multi-Fidelity Simulation Models
PublicationDesign of antenna systems for emerging application areas such as the Internet of Things (IoT), fifth generation wireless communications (5G), or remote sensing, is a challenging endeavor. In addition to meeting stringent performance specifications concerning electrical and field properties, the structure has to maintain small physical dimensions. The latter normally requires searching for trade-off solutions because miniaturization...
-
Global EM-Driven Optimization of Multi-Band Antennas Using Knowledge-Based Inverse Response-Feature Surrogates
PublicationElectromagnetic simulation tools have been playing an increasing role in the design of contemporary antenna structures. The employment of electromagnetic analysis ensures reliability of evaluating antenna characteristics but also incurs considerable computational expenses whenever massive simulations are involved (e.g., parametric optimization, uncertainty quantification). This high cost is the most serious bottleneck of simulation-driven...
-
Dimensionality-Reduced Antenna Modeling with Stochastically Established Constrained Domain
PublicationOver the recent years, surrogate modeling methods have become increasingly widespread in the design of contemporary antenna systems. On the one hand, it is associated with a growing awareness of numerical optimization, instrumental in achieving high-performance structures. On the other hand, considerable computational expenses incurred by massive full-wave electromagnetic (EM) analyses, routinely employed as a major design tool,...
-
CFD COUPLING OF VOF MODEL WITH ARRHENIUS EQUATION FOR ANALYSIS OF LASER-INDUCED THERMAL DEACTIVATION OF E. COLI
PublicationUnderstanding bacterial deactivation at the micro-scale, particularly with E. coli, is crucial for advancing microbiology and has promising applications in biomedical research. In this research contribution, we investigate the thermal inactivation of E. coli bacteria using gold nanoparticles irradiated by a green 1-W laser within a microfluidic chamber. The microfluidic device comprises a fluidic chamber filled with a thin film...
-
Comprehensive Analysis of MILE Gene Expression Data Set Advances Discovery of Leukaemia Type and Subtype Biomarkers
Publication -
ASYNCHRONICZNE METODY RADIOLOKALIZACYJNE
PublicationW pracy przedstawiono wybrane problemy lokalizowania obiektów w asynchronicznych sieciach radiowych. W pierwszej kolejności zostały zdefiniowane kryteria jakościowe do oceny efektywności pracy opracowanych metod oraz przedstawiono model symulacyjny, który został użyty do badań. W kolejnych trzech rozdziałach szczegółowo opisano trzy oryginalne asynchroniczne metody radiolokalizacyjne w różnych wariantach. Przeprowadzono analizę...
-
Thermal Buckling Analysis of Circular Bilayer Graphene sheets Resting on an Elastic Matrix Based on Nonlocal Continuum Mechanics
PublicationIn this article, the thermal buckling behavior of orthotropic circular bilayer graphene sheets embedded in the Winkler–Pasternak elastic medium is scrutinized. Using the nonlocal elasticity theory, the bilayer graphene sheets are modeled as a nonlocal double–layered plate that contains small scale effects and van der Waals (vdW) interaction forces. The vdW interaction forces between the layers are simulated as a set of linear springs...
-
Analysis of IMS/NGN Call Processing Performance Using Phase-Type Distributions Based on Experimental Histograms
PublicationThe paper describes our further research done with the proposed analytical and simulation traffic models of the Next Generation Network (NGN), which is standardized for delivering multimedia services with strict quality and includes elements of the IP Multimedia Subsystem (IMS). The aim of our models of a single IMS/NGN domain is to evaluate two standardized call processing performance parameters, which appropriate values are very...
-
Comprehensive comparison of compact UWB antenna performance by means of multi-objective optimization
PublicationAn optimization-based procedure for comprehensive performance comparison of alternative compact UWB antenna topologies is discussed. The assessment of the antenna performance is conducted with respect to the structure size and its reflection response. More specifically, the best possible tradeoffs between these two figures of merit are identified through multiobjective optimization at the level...
-
Double-diffusive natural convection energy transfer in magnetically influenced Casson fluid flow in trapezoidal enclosure with fillets
PublicationThe prime motive of this disquisition is to deal with mathematical analysis of natural convection energy transport driven by combined buoyancy effects of thermal and solutal diffusion in a trapezoidal enclosure. Casson fluid rheological constitutive model depicting attributes of viscoelastic liquids is envisioned. The influence of the inclined magnetic field governed by Lorentz field law is also considered. To raise the essence...
-
ADAPTIVE METHOD FOR THE SOLUTION OF 1D AND 2D ADVECTION-DIFFUSION EQUATIONS USED IN ENVIRONMENTAL ENGINEERING
PublicationThe paper concerns the numerical solution of one-dimensional (1D) and two-dimensional (2D) advection-diffusion equations. For the numerical solution of the 1D advection-diffusion equation a method, originally proposed for solution of the 1D pure advection equation, has been developed. A modified equation analysis carried out for the proposed method allowed increasing of the resulting solution accuracy and consequently, to reduce...
-
From Darcy to Turbulent Flow: Investigating Flow Characteristics and Regime Transitions in Porous Media
PublicationThis research addresses the flow characteristics within a porous medium composed of a monolayer of closely packed spheres, spanning from viscous-dominated to turbulent flow regimes. In the first part of this paper, the turbulent flow characteristics at a 30 MPa pressure drop within the domain are presented. The results are averaged across different cross-sections between the inlet and outlet. In the second part of the study, simulations...
-
Rapid tolerance‐aware design of miniaturized microwave passives by means of confined‐domain surrogates
PublicationThe effects of uncertainties, primarily manufacturing tolerances but also incomplete information about operating conditions or material parameters, can be detrimental to the performance of microwave components. Quantification of such effects is essential to ensure a meaningful evaluation of the structure, in particular, its reliability under imperfect fabrication procedures. The improvement of the circuit robustness can be achieved...
-
Expedited Yield Optimization of Narrow- and Multi-Band Antennas Using Performance-Driven Surrogates
PublicationUncertainty quantification is an important aspect of engineering design, also pertaining to the development and performance evaluation of antenna systems. Manufacturing tolerances as well as other types of uncertainties, related to material parameters (e.g., substrate permittivity) or operating conditions (e.g., bending) may affect the antenna characteristics. In the case of narrow- or multi-band antennas, this usually leads to...
-
Predicting seismic response of SMRFs founded on different soil types using machine learning techniques
PublicationPredicting the Maximum Interstory Drift Ratio (M-IDR) of Steel Moment-Resisting Frames (SMRFs) is a useful tool for designers to approximately evaluate the vulnerability of SMRFs. This study aims to explore supervised Machine Learning (ML) algorithms to build a surrogate prediction model for SMRFs to reduce the need for complex modeling. For this purpose, twenty well-known ML algorithms implemented in Python software are trained...
-
Analiza temperatury ekwiwalentnej do projektowania nawierzchni asfaltowych w Polsce z wykorzystaniem metody AASHTO 2004
PublicationW artykule przedstawiono analizę temperatury ekwiwalentnej obliczanej w oparciu o kryterium spękań zmęczeniowych warstw asfaltowych z metody AASHTO 2004 oraz kryterium deformacji strukturalnych Instytutu Asfaltowego. Do obliczeń przyjęto konstrukcję nawierzchni KR5 oraz wykorzystano dane temperaturowe z 50 stacji meteorologicznych z okresu 30 lat od roku 1989 do roku 2019 włącznie udostępnione przez Instytut Meteorologii i Gospodarki...
-
A review on analytical models of brushless permanent magnet machines
PublicationThis study provides an in-depth investigation of the use of analytical and numerical methods in analyzing electrical machines. Although numerical models such as the finite-element method (FEM) can handle complex geometries and saturation effects, they have significant computational burdens, are time-consuming, and are inflexible when it comes to changing machine geometries or input values. Analytical models based on magnetic equivalent...
-
Effective method for determining environmental loads on supporting structures for offshore wind turbines
PublicationThis paper presents a description of an effective method for determining loads due to waves, current and wind acting on the supporting structures of the offshore wind turbines. This method is dedicated to the structures consisting of the cylindrical or conical elements as well as (truncates) pyramids of polygon with a large number of sides (8 or more). The presented computational method is based on the Morison equation, which was...