Search results for: 2D MATERIAL
-
2D Materials
Journals -
Composite 2D Material-Based Pervaporation Membranes for Liquid Separation: A Review
PublicationToday, chemistry and nanotechnology cover molecular separations in liquid and gas states by aiding in the design of new nano-sized materials. In this regard, the synthesis and application of two-dimensional (2D) nanomaterials are current fields of research in which structurally defined 2D materials are being used in membrane separation either in self-standing membranes or composites with polymer phases. For instance, pervaporation...
-
A critical review on electrospun membranes containing 2D materials for seawater desalination
PublicationElectrospun nanofibers are a cutting-edge class of membranes which have been applied in several molecular separations. These membranes can be well designed and tailored due to the versatility of the electrospinning process. Eminently, electrospun membranes, once implemented in membrane processes, are an alternative in removing salts and some other minerals from water, so-called desalination, for producing drinking water. Such membranes...
-
npj 2D Materials and Applications
Journals -
Stochastic FE-analysis of shear localization in 2D granular material within a micro-polar hypoplascity
PublicationW artykule przedstawiono wyniki numerycznej stochastycznej analizy wpływu rozkładu początkowego wskaźnika porowatości w materiałach granulowanych na powstawanie lokalizacji odkształceń. Obliczenia wykonano dla ścinania warstwy piasku stosując metodę elementów skończonych na bazie mikropolarnego prawa hipoplastycznego.
-
Crystal Growth, Structure, and Magnetism of the 2D Spin 1/2 Triangular Lattice Material Rb3Yb(PO4)2
PublicationThe single-crystal growth, crystal structure, heat capacity, and anisotropic magnetization characterization of Rb3Yb- (PO4)2, a Yb-based triangular lattice material, are presented. Single-crystal X-ray diffraction shows that Rb3Yb(PO4)2 exhibits [Yb(PO4)]∞ layers, with the Yb in an ordered plane of equilateral triangles. One phosphate group oxygen that is not a near neighbor of the magnetic Yb displays positional disorder. The...
-
Photoluminescence as a probe of phosphorene properties
PublicationHere, we provide a detailed evaluation of photoluminescence (PL) as a comprehensive tool for phosphorene characterization with the emphasis on a prominent quantitative role of PL in providing fingerprint-like features due to its extreme sensitivity to the band structure details, anisotropy, disorder, external fields, etc. Factors such as number of layers, dimensionality, structural and chemical disorder, and environmental factors...
-
Photoluminescence as a probe of phosphorene properties
Publication -
Measurements of the optical and thermal properties of the 2D black phosphorus coating
PublicationBlack phosphorus is a 2D material, which properties are still being discovered. In this paper, the sensitivity to the temperature of a few-layer black phosphorus coating deposited, on the surface of a microsphere-based fiber-optic sensor, by a dip-coating method is presented. The coating was investigated after 2, 3, and 5 deposition cycles and during temperature growth from 50 °C to 300 °C in an interferometric setup. The intensity...
-
On jump conditions at non-material singular curves in the resultant shell thermomechanics
PublicationThe global, refined, resultant, two-dimensional (2D) balance laws of mass, linear and angular momenta, and energy as well as the entropy inequality were formulated by Pietraszkiewicz (2011) as exact implications of corresponding laws of 3D rational thermomechanics. In case of a shell with the regular base surface and all resultant surface fields differentiable everywhere on it and at any time instant, the local laws of the resultant...
-
Electrochemical synthesis of 2D copper coordination-polymers: Layer-stacking deviation induced by the solvent and its effect on the adsorptive properties
PublicationA 2D Cu-based Metal-Organic Framework (MOF), namely copper-terephthalate (Cu(1,4-BDC)), was successfully synthesized by electrochemical method for effective methylene blue (MB) sorption from aqueous solutions. The composition, morphology, and the presence of functional groups in the obtained material were verified by Fourier Transform Infrared spectroscopy (FTIR), Powder X-Ray Diffraction (PXRD), Thermal (TGA), and Elemental (EA)...
-
Weak localization competes with the quantum oscillations in a natural electronic superlattice: The case of Na1.5(PO2)4(WO3)20
PublicationWe report an investigation of the combined structural and electronic properties of the bronze Na1.5(PO2)4(WO3)20. Its low-dimensional structure and possible large reconstruction of the Fermi surface due to charge density wave instability make this bulk material a natural superlattice with a reduced number of carriers and Fermi energy. Signatures of multilayered two-dimensional (2D) electron weak localization are consequently reported,...
-
Fracture simulations in concrete beam under bending using a mesoscopic model with cohesive elements
PublicationThe main aim of this paper was to investigate a complex fracture process in a concrete beam subjected to 3-point bending test by means of the 2D meso-scale FEM with 4-node cohesive elements embedded in the initial mesh of 3-node solid elements. The material heterogeneity was taken into account by considering 3 different phases (aggregate, cement matrix, ITZs) on the basis of randomly generated internal structure of concrete and...
-
On the peculiarities of anti-plane surface waves propagation for media with microstructured coating
PublicationWe discuss new type of surface waves which exist in elastic media with surface energy. Here we present the model of a coating made of polymeric brush. From the physical point of view the considered model of surface elasticity describes a highly anisotropic surface coating. Here the surface energy model could be treated as 2D reduced strain gradient continuum as surface strain energy depends on few second spatial derivatives of...
-
Defining the thermal conductivity of thermally heterogeneous hollow wall bricks used as elements for increasing the comfort of buildings
PublicationThe article presents numerical calculation analysis in the scope of determining thermal conductivity coefficientλeq[W/(m·K)] of thermally heterogeneous hollow bricks of thermally heterogeneous structure (a combinationof structural material with thermal insulation material). Numerical calculations were conducted by means ofprofessional software TRISCO-KOBRU 86, serving thermal circulation analysis in a 2D field in stationary approach.The...
-
Influence of soil anisotropic stiffness on the deformation induced by an open pit excavation.
PublicationIn this paper, the problem of deformation induced by an open pit excavation in anisotropic stiff soils is analysed by FE modelling. The presented research is focused on the influence of material model with anisotropic stiffness on the accuracy of deformation predictions as compared with the field measurements. A new hyperelastic-plastic model is applied to simulate anisotropic mechanical behaviour of stiff soils. It is capable...
-
Experimental and Numerical Analysis of Air Trapping in a Porous Medium with Coarse Textured Inclusions
PublicationThe paper presents a 2D upward infiltration experiment performed on a model porous medium consisting of fine sand background with two inclusions made of coarser sands. The purpose of the experiment was to investigate the effects of structural air trapping, which occurs during infiltration as a result of heterogeneous material structure. The experiment shows that a significant amount of air becomes trapped in each of the inclusions. Numerical...
-
Evaluation of respiration capacity of VF in hybrid constructed wetland systems.
PublicationThree VF-beds operating in hybrid constructed wetlands in configuration HF-VF-HF were analysed. These hybrid constructed wetlands provide the II stage biological treatment. They are located in Pommerania voivodship, in Sarbsk, Wiklino and Wieszyno, and their capacities are 29.5, 14.2 and 21.6 m3/d, respectively. The article focuses on performance and operation of VF-CW plants during one year. Based on removal of organic matter...
-
Non-uniqueness of fracture parameter choice in simulations of concrete cracking at mesoscale level
PublicationIn the paper a non-uniqueness of fracture parameter choice in simulations of cracking process in plain concrete specimens at mesoscale level under monotonic static loading is analysed. The Finite Element Method is used, where cracks are defined in a discrete way using interface cohesive elements with nonlinear material law including softening. The concrete mesostructure (such as: cement matrix, air voids, aggregates, and Interfacial...
-
Two-dimensional simulations of concrete fracture at aggregate level with cohesive elements based on X-ray lCT images
PublicationThe paper presents results of two-dimensional meso-scale simulations of fracture in notched concrete beams subjected to three-point bending test. Concrete was assumed as a 4-phase material composed of aggregate grains placed in the cement matrix, interfacial transitional zones (ITZs) and macro-voids. The particle distribution was taken from real concrete beams on the basis of X-ray lCT images. Comprehensive numerical analyses were carried...
-
Numerical investigations on early indicators of fracture in concrete at meso-scale.
PublicationFracture is a major reason of the global failure of concretes. The understanding of fracture is important to ensure the safety of structures and to optimize the material behaviour. In particular an early prediction possibility of fracture in concretes is of major importance. In this paper, concrete fracture under bending was numerically analysed using the Discrete Element Method (DEM). The real mesoscopic structure of a concrete...
-
EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF CONCRETE BEHAVIOUR AT MESO-LEVEL DURING QUASI-STATIC SPLITTING TENSION
PublicationThe paper describes experimental and numerical results of quasi-static splitting tensile tests on concrete specimens at meso-scale level. The loading strip was made of plywood or steel. Fracture in concrete was detected at the aggregate level by means of three non-destructive methods: 3D x-ray micro-computed tomography, 2D scanning electron microscope and manual 2D digital microscope. The discrete element method was used to directly...
-
Determination of the refractive index and wavelength‐dependent optical properties of few‐layer CrCl3 within the Fresnel formalism
PublicationBased on previous reports on the optical microscopy contrast of mechanically exfoliated few layer CrCl3 transferred on 285 nmand 270 nmSiO2 on Si(100), we focus on the experimental determination of an effective mean complex refractive index via a fitting analysis based on the Fresnel equations formalism. Accordingly, the layer and wavelength-dependent absorbance and reflectance are calculated. Layer and wavelength-dependent optical...
-
SIMULATIONS OF FRACTURE IN CONCRETE BEAMS UNDER BENDING USING A CONTINUUM AND DISCRETE APPROACH
PublicationThe paper describes two-dimensional meso-scale results of fracture in notched concrete beams under bending. Concrete was modelled as a random heterogeneous 4-phase material composed of aggregate particles, cement matrix, interfacial transitional zones and air voids. Within continuum mechanics, the simulations were carried out with the finite element method based on a isotropic damage constitutive model enhanced by a characteristic...
-
MODELLING OF CONCRETE FRACTURE AT AGGREGATE LEVEL USING DEM BASED ON X-RAY mu CT IMAGES OF INTERNAL STRUCTURE
PublicationThe paper describes two-dimensional meso-scale numerical results of fracture in notched concrete beams under quasi-static three-point bending. Concrete was modelled as a random heterogeneous 4-phase material composed of aggregate particles, cement matrix, interfacial transitional zones (ITZs) and air voids. As a numerical approach, the discrete element method (DEM) was used. The concrete micro-structure in calculations was directly...
-
Mesoscopic simulations of crack propagation in concrete using cohesive elements
PublicationThe paper presents results of two-and three-dimensional meso-scale simulations of fracture in notched concrete beams subjected to three-point bending test. Concrete was assumed as a 3-phase material composed of aggregate grains placed in the cement matrix with Interfacial Transitional Zones (ITZs) between then. In 2D simulations macro-voids were also taken into account. The particle distribution was taken from real concrete beams...
-
Shear fracture of longitudinally reinforced concrete beams under bending using Digital Image Correlation and FE simulations with concrete micro-structure based on X-ray micro-computed tomography images
PublicationThe paper presents experimental and numerical investigations of the shear fracture in rectangular concrete beams longitudinally reinforced with steel or basalt bar under quasi-static three point bending. Shear fracture process zone formation and development on the surface of beams was investigated by Digital Image Correlation (DIC) whereas thorough analyses of 3D material micro-structure, air voids, width and curvature of shear...
-
Superconductivity in CaBi2
PublicationSuperconductivity is observed with critical temperature Tc = 2.0 K in self-flux-grown single crystals of CaBi2. This material adopts the ZrSi2 structure type with lattice parameters a = 4.696(1) Å, b = 17.081(2) Å and c = 4.611(1) Å. The crystals of CaBi2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at Tc is DC/gTc = 1.41, confirming bulk superconductivity;...
-
Solvothermal growth of {0 0 1} exposed anatase nanosheets and their ability to mineralize organic pollutants. The effect of alcohol type and content on the nucleation and growth of TiO2 nanostructures
PublicationHerein, the series of {0 0 1} exposed anatase nanosheets from HF-assisted solvothermal growth synthesis were obtained. The two-dimensional TiO2 were characterized, including both bulk (XRD, DR-UV–Vis, Mott-Schottky) and surface characteristics (N2 sorption, XPS, SEM) with experimental results compiled with Density Functional Theory (DFT) calculations. The effect of alcohol amount and type was studied, demonstrating the crucial...
-
Modelling tunnelling-induced deformation in stiff soils with a hyperelastic–plastic anisotropic model
PublicationIn this paper, the tunnelling-induced deformation in anisotropic stiff soils is analysed using FE modelling. The influence of material description is investigated rather than an advanced simulation of the tunnelling method. A new hyperelastic– plastic model is proposed to describe the anisotropic mechanical behaviour of stiff highly overconsolidated soil. This model can reproduce the superposition of variable stress-induced anisotropy...
-
Investigation of the Few‐Layer Black Phosphorus Degradation by the Photonic Measurements
PublicationFew-layer black phosphorus (FLBP) is a 2D material that gains worldwide interest for its possible applications, mainly in electronics and optoelec-tronics. However, as FLBP is prone to a degradation process under envi-ronmental conditions, there is a need for a monitoring method allowing investigation of its surface quality. Among many techniques, optoelectronic ones have unique advantages of fast response, non-contact, and non-invasive...
-
A facile approach to fabricate load-bearing porous polymer scaffolds for bone tissue engineering
PublicationBiodegradable porous scaffolds with oriented interconnected pores and high mechanical are load-bearing biomaterials for bone tissue engineering. Herein, we report a simple, non-toxic, and cost-effective method to fabricate high-strength porous biodegradable scaffolds, composed of a polymer matrix of polycaprolactone (PCL) and water-soluble poly (ethylene oxide) (PEO) as a sacrificial material by integrating annealing treatment,...
-
Surface Roughness Evaluation in Thin EN AW-6086-T6 Alloy Plates after Face Milling Process with Different Strategies
PublicationLightweight alloys made from aluminium are used to manufacture cars, trains and planes. The main parts most often manufactured from thin sheets requiring the use of milling in the manufacturing process are front panels for control systems, housing parts for electrical and electronic components. As a result of the final phase of the manufacturing process, cold rolling, residual stresses remain in the surface layers, which can influence...
-
Meso‐scale analyses of size effect in brittle materials using DEM
PublicationThe paper describes numerical meso-scale results of a size effect on strength, brittleness and fracture in brittle materials like concrete. The discrete element method (DEM) was used to simulate the size effect during quasi-static splitting tension with the experimental-based meso-structure. The two-dimensional (2D) calculations were carried out on concrete cylindrical specimens with two diameters wherein two different failure...
-
Numerical investigations of discrete crack propagation in Montevideo splitting test using cohesive elements and real concrete micro-structure
PublicationThe paper is aimed at accurately predicting the discrete fracture process in concrete specimens under complex stress states in two dimensional (2D) simulations. Plain concrete specimens subjected to Montevideo splitting test (MVD) were used for consideration due to non-negligible shear stresses impact in this type of test. In order to reflect the heterogeneous nature of the concrete, the meso-structure of the samples was included...
-
The influence of amorphous macrodiol, diisocyanate type and l-ascorbic acid modifier on chemical structure, morphology and degradation behavior of polyurethanes for tissue scaffolds fabrication
PublicationStudies described in this work were related to the bulk synthesis and characterization of polyurethanes (PURs) obtained with the use of cyclic 4,4′-methylene bis(cyclohexyl isocyanate) (HMDI) or linear 1,6-hexamethylene diisocyanate (HDI), amorphous α,ω-dihydroxy(ethylene-butylene adipate) macrodiol (PEBA), 1,4-butandiol (BDO) chain extender and dibutyltin dilaurate (DBTDL) catalyst. Obtained PURs were modified with l-ascorbic...
-
Contact with coupled adhesion and friction: Computational framework, applications, and new insights
PublicationContact involving soft materials often combines dry adhesion, sliding friction, and large deformations. At the local level, these three aspects are rarely captured simultaneously, but included in the theoretical models by Mergel et al., (2019). We here develop a corresponding finite element framework that captures 3D finite-strain contact of two deformable bodies. This framework is suitable to investigate sliding friction even...
-
Size effect at aggregate level in microCT scans and DEM simulation – Splitting tensile test of concrete
PublicationThe paper describes an experimental and numerical study of size effect on concrete cylindrical specimens in splitting tensile test. Own experimental campaign was performed on specimens with 5 various diameters from D = 74, 105, 150, 192 and 250 mm with hardboard loading strips (distributed load according to standard methods) scaled proportionally to the specimen diameter. The crack opening-control system was applied to obtain the...
-
Surface Texture after Turning for Various Workpiece Rigidities
PublicationIn the paper, we present an analysis of the surface texture of turned parts with L/D (length/diameter) ratios of 6 and 12 and various rigidity values. The studies were carried out on samples made of S355JR steel and AISI 304 stainless steel. A detailed analysis of 2D surface profiles was carried out by using a large number of parameters that allowed us to distinguish significant differences in the surface microgeometry, which confirmed...
-
Mechanical exfoliation and layer number identification of single crystal monoclinic CrCl3
PublicationAfter the recent finding that CrI3, displays ferromagnetic order down to its monolayer, extensive studies have followed to pursue new two-dimensional (2D) magnetic materials. In this article, we report on the growth of single crystal CrCl3 in the layered monoclinic phase. The system after mechanical exfoliation exhibits stability in ambient air (the degradation occurs on a time scale at least four orders of magnitude longer than...
-
Limits of enhanced of macro- and meso-scale continuum models for studying size effect in concrete under tension
PublicationThe paper investigates a mechanical quasi-static size effect in concrete during splitting tension at the macro- and meso-level. In experiments, five different diameters of cylindrical concrete specimens were tested. Twodimensional plane strain finite element (FE) simulations were carried out to reproduce the experimental size effect. The size effect in experiments by Carmona et al. was also simulated. Two enhanced continuum concrete...
-
The effect of boron concentration on the electrical, morphological and optical properties of boron-doped nanocrystalline diamond sheets: Tuning the diamond-on-graphene vertical junction
PublicationIn this paper, the effect of boron doping on the electrical, morphological and structural properties of free-standing nanocrystalline diamond sheets (thickness ~ 1 μm) was investigated. For this purpose, we used diamond films delaminated from a mirror-polished tantalum substrate following a microwave plasma-assisted chemical vapor deposition process, each grown with a different [B]/[C] ratio (up to 20,000 ppm) in the gas phase....
-
Ultrasonic wave propagation and digital image correlation measurements of steel bars under 3-point bending
Open Research DataThe DataSet contains the results of the mechanical behaviour of a bar under a 3-point bending test. The bar was made of steel and had a cross-section of 5.96 × 5.96 mm2 and a length of 200 mm. The three-point bending test was performed using a Zwick/Roell Z10 universal testing machine (UTM), with a distance between supports of 12 cm. The parameters...
-
Influence of grain shape on the mechanical behaviour of granular materials
PublicationWe performed series of numerical vertical compression tests on assemblies of 2D granular material using a Discrete Element code and studied the results in regard to the grain shape. The samples consist of 5000 grains made either of 3 overlapping discs (clump - grain with concavities) or of six-edged polygons (convex grain). These two types of grains have a similar external envelope, ruled with a geometrical parameter α. In the...
-
A Quasi-2D MOSFET Model — 2D-to-Quasi-2D Transformation
PublicationA quasi-two-dimensional (quasi-2D) representation of the MOSFET channel is proposed in this work. The representation lays the foundations for a quasi 2D MOSFET model. The quasi 2D model is a result of a 2D into quasi 2D transformation. The basis for the transformation are an analysis of a current density vector field and such phenomena as Gradual Channel Detachment Effect (GCDE), Channel Thickness Modulation Effect (CTME), and...
-
Jumping Wave 2D Profiles
Open Research DataThe file contains 2D profiles obtained from a jumping wave study in front of the tool during burnishing of 1.0562 steel by the toroidal-cone tool. Burnishing speed 30.5 m/min, feed of burnishing 0.2mm/rev Force 550 and 800 N.
-
Nonlinear resultant theory of shells accounting for thermodiffusion
PublicationThe complete nonlinear resultant 2D model of shell thermodiffusion is developed. All 2D balance laws and the entropy imbalance are formulated by direct through-the-thickness integration of respective 3D laws of continuum thermodiffusion. This leads to a more rich thermodynamic structure of our 2D model with several additional 2D fields not present in the 3D parent model. Constitutive equations of elastic thermodiffusive shells...
-
2D inverse method of turbomachinery stage design
Publication1. How 2D model for turbomachinery stages has developed historically. 2. Recent understanding of physical background of 2D model. 3. Curvilinear system of non-orthogonal coordinates in the application to 2D model. 4. Set of basic equations. 5. Closing conditions for the inverse problem. 6. Examples of solutions a)
-
Research 1: Heterojunction of (P, S) co-doped g-C3N4 and 2D TiO2 for improved carbamazepine and acetaminophen photocatalytic degradation
Open Research DataThe first research article consisted on the synthesis of phosphorus and sulfur co-doped graphitic carbon nitride incorporated in 2D TiO2 structure for solar-driven degradation of emerging pollutants from the group of pharmaceuticals not susceptible to biodegradation. The hybrid photocatalysts with different loadings of (P, S)-doped g-C3N4 were characterized...
-
On the Equations of the Surface Elasticity Model Based on the Theory of Polymeric Brushes
PublicationMotivating by theory of polymers, in particular, by the models of polymeric brushes we present here the homogenized (continual) two-dimensional (2D) model of surface elasticity. A polymeric brush consists of an system of almost aligned rigid polymeric chains. The interaction between chain links are described through Stockmayer potential, which take into account also dipole-dipole interactions. The presented 2D model can be treated...